Comparative Analysis of Extremely Thermophilic Caldicellulosiruptor Species Reveals Common and Unique Cellular Strategies for Plant Biomass Utilization.

PubWeight™: 0.81‹?›

🔗 View Article (PMID 26253670)

Published in Appl Environ Microbiol on August 07, 2015

Authors

Jeffrey V Zurawski1, Jonathan M Conway1, Laura L Lee1, Hunter J Simpson1, Javier A Izquierdo1, Sara Blumer-Schuette1, Intawat Nookaew2, Michael W W Adams3, Robert M Kelly4

Author Affiliations

1: Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.
2: Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
3: Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
4: Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA rmkelly@ncsu.edu.

Articles cited by this

Search and clustering orders of magnitude faster than BLAST. Bioinformatics (2010) 51.97

PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev (1999) 10.69

The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res (2013) 10.24

Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett (2001) 8.45

Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol (2009) 7.13

A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A (2005) 5.03

Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci U S A (2004) 4.40

Pectin structure and biosynthesis. Curr Opin Plant Biol (2008) 3.96

The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem (2006) 3.77

Reconstitution of the bacterial chemotaxis signal transduction system from purified components. J Biol Chem (1991) 3.56

Revealing nature's cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science (2013) 3.51

Bacterial chemotaxis and the molecular logic of intracellular signal transduction networks. Annu Rev Biophys Biophys Chem (1991) 3.18

Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol Mol Biol Rev (2004) 3.15

The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Mol Cell (2010) 2.76

Chemotactic signaling in filamentous cells of Escherichia coli. J Bacteriol (1985) 2.69

Complete genome sequence of the cellulolytic thermophile Caldicellulosiruptor obsidiansis OB47T. J Bacteriol (2010) 1.86

Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Appl Environ Microbiol (2008) 1.85

Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization. J Biol Chem (2007) 1.77

Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol Lett (1994) 1.64

Heat shock response by the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol (2003) 1.52

Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park. Appl Environ Microbiol (2009) 1.49

Comparative genomic and protein sequence analyses of a complex system controlling bacterial chemotaxis. Methods Enzymol (2007) 1.46

Classification of 'Anaerocellum thermophilum' strain DSM 6725 as Caldicellulosiruptor bescii sp. nov. Int J Syst Evol Microbiol (2009) 1.41

Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng (2003) 1.37

Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium "Anaerocellum thermophilum" DSM 6725. J Bacteriol (2009) 1.33

Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass. J Bacteriol (2012) 1.32

Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev (2013) 1.28

Caldicellulosiruptor kristjanssonii sp. nov., a cellulolytic, extremely thermophilic, anaerobic bacterium. Int J Syst Bacteriol (1999) 1.24

Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Microbiol Biotechnol (2007) 1.23

Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor. Appl Environ Microbiol (2010) 1.22

Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev (2013) 1.21

Caldicellulosiruptor owensensis sp. nov., an anaerobic, extremely thermophilic, xylanolytic bacterium. Int J Syst Bacteriol (1998) 1.18

Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus. J Bacteriol (2011) 1.16

Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci U S A (2014) 1.14

Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs. Int J Syst Evol Microbiol (2008) 1.12

Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences. Appl Environ Microbiol (2009) 1.11

Glycoside hydrolase inventory drives plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng (2011) 1.06

Evidence for cyclic Di-GMP-mediated signaling in Bacillus subtilis. J Bacteriol (2012) 1.06

Hairy plant polysaccharides: a close shave with microbial esterases. Microbiology (1998) 1.06

Use of label-free quantitative proteomics to distinguish the secreted cellulolytic systems of Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Appl Environ Microbiol (2011) 1.03

Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv (2012) 1.01

Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii. Bioresour Technol (2013) 0.99

Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal. Environ Technol (2010) 0.98

Label-free quantitative proteomics for the extremely thermophilic bacterium Caldicellulosiruptor obsidiansis reveal distinct abundance patterns upon growth on cellobiose, crystalline cellulose, and switchgrass. J Proteome Res (2011) 0.96

S-layer homology domain proteins Csac_0678 and Csac_2722 are implicated in plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Appl Environ Microbiol (2011) 0.92

Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance. Biotechnol Biofuels (2014) 0.92

Deletion of Caldicellulosiruptor bescii CelA reveals its crucial role in the deconstruction of lignocellulosic biomass. Biotechnol Biofuels (2014) 0.91

Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile. J Bacteriol (2014) 0.91

Compositional analysis of water-soluble materials in switchgrass. J Agric Food Chem (2010) 0.89

Sugar transport in (hyper)thermophilic archaea. Res Microbiol (2002) 0.88

Mathematical modeling of hydrolysate diffusion and utilization in cellulolytic biofilms of the extreme thermophile Caldicellulosiruptor obsidiansis. Bioresour Technol (2010) 0.83

fSpatial and temporal dynamics of cellulose degradation and biofilm formation by Caldicellulosiruptor obsidiansis and Clostridium thermocellum. AMB Express (2011) 0.83

Uronic polysaccharide degrading enzymes. Curr Opin Struct Biol (2014) 0.81

A biphasic approach to the determination of the phenotypic and genotypic diversity of some anaerobic, cellulolytic, thermophilic, rod-shaped bacteria. Antonie Van Leeuwenhoek (1994) 0.81

Evaluation of assimilatory sulphur metabolism in Caldicellulosiruptor saccharolyticus. Bioresour Technol (2014) 0.79

Biofilm formation by designed co-cultures of Caldicellulosiruptor species as a means to improve hydrogen productivity. Biotechnol Biofuels (2015) 0.78

Discrete and structurally unique proteins (tāpirins) mediate attachment of extremely thermophilic Caldicellulosiruptor species to cellulose. J Biol Chem (2015) 0.78

The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria. Biochim Biophys Acta (2014) 0.76