Report on the sixth blind test of organic crystal structure prediction methods.

PubWeight™: 1.55‹?› | Rank: Top 4%

🔗 View Article (PMID 27484368)

Published in Acta Crystallogr B Struct Sci Cryst Eng Mater on August 01, 2016

Authors

Anthony M Reilly1, Richard I Cooper2, Claire S Adjiman3, Saswata Bhattacharya4, A Daniel Boese5, Jan Gerit Brandenburg6, Peter J Bygrave7, Rita Bylsma8, Josh E Campbell7, Roberto Car9, David H Case7, Renu Chadha10, Jason C Cole1, Katherine Cosburn11, Herma M Cuppen8, Farren Curtis11, Graeme M Day7, Robert A DiStasio9, Alexander Dzyabchenko12, Bouke P van Eijck13, Dennis M Elking14, Joost A van den Ende8, Julio C Facelli15, Marta B Ferraro16, Laszlo Fusti-Molnar14, Christina Anna Gatsiou3, Thomas S Gee7, René de Gelder8, Luca M Ghiringhelli4, Hitoshi Goto17, Stefan Grimme6, Rui Guo18, Detlef W M Hofmann19, Johannes Hoja4, Rebecca K Hylton18, Luca Iuzzolino18, Wojciech Jankiewicz20, Daniël T de Jong8, John Kendrick1, Niek J J de Klerk8, Hsin Yu Ko9, Liudmila N Kuleshova21, Xiayue Li2, Sanjaya Lohani11, Frank J J Leusen1, Albert M Lund3, Jian Lv4, Yanming Ma4, Noa Marom5, Artëm E Masunov6, Patrick McCabe1, David P McMahon7, Hugo Meekes8, Michael P Metz10, Alston J Misquitta11, Sharmarke Mohamed22, Bartomeu Monserrat23, Richard J Needs23, Marcus A Neumann12, Jonas Nyman7, Shigeaki Obata17, Harald Oberhofer13, Artem R Oganov14, Anita M Orendt15, Gabriel I Pagola16, Constantinos C Pantelides3, Chris J Pickard17, Rafal Podeszwa20, Louise S Price18, Sarah L Price18, Angeles Pulido7, Murray G Read1, Karsten Reuter13, Elia Schneider18, Christoph Schober13, Gregory P Shields1, Pawanpreet Singh10, Isaac J Sugden3, Krzysztof Szalewicz10, Christopher R Taylor7, Alexandre Tkatchenko4, Mark E Tuckerman18, Francesca Vacarro1, Manolis Vasileiadis3, Alvaro Vazquez-Mayagoitia2, Leslie Vogt18, Yanchao Wang4, Rona E Watson18, Gilles A de Wijs8, Jack Yang7, Qiang Zhu14, Colin R Groom1

Author Affiliations

1: The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England.
2: Chemical Crystallography, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England.
3: Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, England.
4: Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.
5: Department of Chemistry, Institute of Physical and Theoretical Chemistry, University of Graz, Heinrichstraße 28/IV, 8010 Graz, Austria.
6: Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany.
7: School of Chemistry, University of Southampton, Southampton SO17 1BJ, England.
8: Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
9: Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
10: University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
11: Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA.
12: Karpov Institute of Physical Chemistry, Moscow, Russia.
13: Utrecht University, The Netherlands.
14: OpenEye Scientific Software, 9 Bisbee Court, Suite D, Santa Fe, NM 87508, USA.
15: Center for High Performance Computing, University of Utah, 155 South 1452 East Room 405, Salt Lake City, UT 84112-0190, USA.
16: Departamento de Física and Ifiba (CONICET) Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. I (1428), Buenos Aires, Argentina.
17: Educational Programs on Advanced Simulation Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
18: Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England.
19: CRS4, Parco Scientifico e Tecnologico, POLARIS, Edificio 1, 09010 PULA, Italy.
20: Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
21: FlexCryst, Schleifweg 23, 91080 Uttenreuth, Germany.
22: Department of Physics, University of Toronto, Toronto, Canada M5S 1A7.
23: Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

Articles cited by this

Structure validation in chemical crystallography. Acta Crystallogr D Biol Crystallogr (2009) 1216.15

Generalized Gradient Approximation Made Simple. Phys Rev Lett (1996) 99.29

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter (1988) 93.32

Retrieval of crystallographically-derived molecular geometry information. J Chem Inf Comput Sci (2004) 74.81

Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallogr B (1990) 67.82

Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys (1988) 39.03

The Cambridge Structural Database. Acta Crystallogr B Struct Sci Cryst Eng Mater (2016) 34.37

Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem (2006) 13.16

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys (2010) 11.76

Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett (2009) 4.00

van der Waals density functional for general geometries. Phys Rev Lett (2004) 3.99

Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett (2003) 3.63

De novo determination of the crystal structure of a large drug molecule by crystal structure prediction-based powder NMR crystallography. J Am Chem Soc (2013) 2.68

Insights into current limitations of density functional theory. Science (2008) 2.35

Theoretical chemistry. Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mole accuracy. Science (2014) 2.14

A test of crystal structure prediction of small organic molecules. Acta Crystallogr B (2000) 1.84

Challenges for density functional theory. Chem Rev (2011) 1.71

Predicting crystal structures of organic compounds. Chem Soc Rev (2013) 1.58

Distributed Multipole Analysis:  Stability for Large Basis Sets. J Chem Theory Comput (2005) 1.57

Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. Phys Chem Chem Phys (2010) 1.50

Crystal structure prediction of small organic molecules: a second blind test. Acta Crystallogr B (2002) 1.45

Energy ranking of molecular crystals using density functional theory calculations and an empirical van der waals correction. J Phys Chem B (2005) 1.38

Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism. Acc Chem Res (2009) 1.34

Accurate and efficient method for many-body van der Waals interactions. Phys Rev Lett (2012) 1.34

Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. J Chem Phys (2012) 1.31

Conformational polymorphism. Chem Rev (2013) 1.29

A major advance in crystal structure prediction. Angew Chem Int Ed Engl (2008) 1.11

Knowledge-based model of hydrogen-bonding propensity in organic crystals. Acta Crystallogr B (2007) 1.11

Constrained evolutionary algorithm for structure prediction of molecular crystals: methodology and applications. Acta Crystallogr B (2012) 1.06

How to quantify energy landscapes of solids. J Chem Phys (2009) 1.02

Benchmarking of London Dispersion-Accounting Density Functional Theory Methods on Very Large Molecular Complexes. J Chem Theory Comput (2013) 0.99

Long-range correlation energy calculated from coupled atomic response functions. J Chem Phys (2014) 0.96

Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations. J Chem Phys (2005) 0.95

Tailor-made force fields for crystal-structure prediction. J Phys Chem B (2008) 0.95

Exchange-hole dipole moment and the dispersion interaction revisited. J Chem Phys (2007) 0.95

Why don't we find more polymorphs? Acta Crystallogr B Struct Sci Cryst Eng Mater (2013) 0.94

A General Quantum Mechanically Derived Force Field (QMDFF) for Molecules and Condensed Phase Simulations. J Chem Theory Comput (2014) 0.92

Uncovering molecular details of urea crystal growth in the presence of additives. J Am Chem Soc (2012) 0.90

Many-body dispersion interactions in molecular crystal polymorphism. Angew Chem Int Ed Engl (2013) 0.89

Understanding molecular crystals with dispersion-inclusive density functional theory: pairwise corrections and beyond. Acc Chem Res (2014) 0.89

Simulating micrometre-scale crystal growth from solution. Nature (2005) 0.88

Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals. J Chem Phys (2013) 0.87

Are crystal polymorphs predictable? The case of sexithiophene. J Phys Chem A (2008) 0.86

Polymorph identification and crystal structure determination by a combined crystal structure prediction and transmission electron microscopy approach. Chemistry (2013) 0.86

Role of dispersion interactions in the polymorphism and entropic stabilization of the aspirin crystal. Phys Rev Lett (2014) 0.85

Sixth blind test of organic crystal-structure prediction methods. Acta Crystallogr B Struct Sci Cryst Eng Mater (2014) 0.84

Convergence Properties of Crystal Structure Prediction by Quasi-Random Sampling. J Chem Theory Comput (2016) 0.83

Crystal Structure Prediction from First Principles: The Crystal Structures of Glycine. Chem Phys Lett (2015) 0.83

Dispersion corrected hartree-fock and density functional theory for organic crystal structure prediction. Top Curr Chem (2014) 0.83

The synthesis and structure-activity relationship of substituted N-phenyl anthranilic acid analogs as amyloid aggregation inhibitors. Bioorg Med Chem Lett (2008) 0.83

Temperature-accelerated method for exploring polymorphism in molecular crystals based on free energy. Phys Rev Lett (2011) 0.83

Substitutional and orientational disorder in organic crystals: a symmetry-adapted ensemble model. Phys Chem Chem Phys (2011) 0.82

Accurate Molecular Crystal Lattice Energies from a Fragment QM/MM Approach with On-the-Fly Ab Initio Force Field Parametrization. J Chem Theory Comput (2011) 0.82

Van der Waals interactions in solids using the exchange-hole dipole moment model. J Chem Phys (2012) 0.81

Computational prediction of salt and cocrystal structures--does a proton position matter? Int J Pharm (2011) 0.80

Second-Order Møller-Plesset Perturbation Theory in the Condensed Phase: An Efficient and Massively Parallel Gaussian and Plane Waves Approach. J Chem Theory Comput (2012) 0.78

Crystal Polymorphism in Oxalyl Dihydrazide: Is Empirical DFT-D Accurate Enough? J Chem Theory Comput (2012) 0.77

The embedded many-body expansion for energetics of molecular crystals. J Chem Phys (2012) 0.77

Polymorph formation studied by 3D nucleation simulations. Application to a yellow isoxazolone dye, paracetamol, and L-glutamic acid. J Phys Chem B (2007) 0.77

Articles by these authors

Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett (2009) 4.00

Many-body van der Waals interactions in molecules and condensed matter. J Phys Condens Matter (2014) 0.86

Collective many-body van der Waals interactions in molecular systems. Proc Natl Acad Sci U S A (2012) 0.86

Hydrogen bonding at C=Se acceptors in selenoureas, selenoamides and selones. Acta Crystallogr B Struct Sci Cryst Eng Mater (2016) 0.85

Benchmarking DFT and semiempirical methods on structures and lattice energies for ten ice polymorphs. J Chem Phys (2015) 0.85

Sliding mechanisms in multilayered hexagonal boron nitride and graphene: the effects of directionality, thickness, and sliding constraints. Phys Rev Lett (2015) 0.84

Sixth blind test of organic crystal-structure prediction methods. Acta Crystallogr B Struct Sci Cryst Eng Mater (2014) 0.84

Low-Cost Quantum Chemical Methods for Noncovalent Interactions. J Phys Chem Lett (2014) 0.80

The polymorphs of ROY: application of a systematic crystal structure prediction technique. Acta Crystallogr B (2012) 0.78

Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J Chem Phys (2015) 0.78

Crystal structure prediction for cyclotrimethylene trinitramine (RDX) from first principles. Phys Chem Chem Phys (2009) 0.78

Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB). J Chem Phys (2016) 0.77

Accurate Modeling of Organic Molecular Crystals by Dispersion-Corrected Density Functional Tight Binding (DFTB). J Phys Chem Lett (2014) 0.76

Use of crystal structure informatics for defining the conformational space needed for predicting crystal structures of pharmaceutical molecules. J Chem Theory Comput (2017) 0.75