Changes in Anthocyanin Production during Domestication of Citrus.

PubWeight™: 0.75‹?›

🔗 View Article (PMID 28196843)

Published in Plant Physiol on February 14, 2017

Authors

Eugenio Butelli1,2,3,4,5,6,7,8,9, Andrés Garcia-Lor10,11,12,13,14,15,16,17,18, Concetta Licciardello10,11,12,13,14,15,16,17,18, Giuseppina Las Casas10,11,12,13,14,15,16,17,18, Lionel Hill19, Giuseppe Reforgiato Recupero10,11,12,13,14,15,16,17,18, Manjunath L Keremane10,11,12,13,14,15,16,17,18, Chandrika Ramadugu10,11,12,13,14,15,16,17,18, Robert Krueger10,11,12,13,14,15,16,17,18, Qiang Xu20, Xiuxin Deng10,11,12,13,14,15,16,17,18, Anne-Laure Fanciullino10,11,12,13,14,15,16,17,18, Yann Froelicher10,11,12,13,14,15,16,17,18, Luis Navarro10,11,12,13,14,15,16,17,18, Cathie Martin21

Author Affiliations

1: John Innes Centre, Norwich NR4 7UH, United Kingdom (E.B., L.H., C.M.); eugenio.butelli@jic.ac.uk.
2: Instituto Valenciano de Investigaciones Agrarias, 46113 Moncada, Valencia, Spain (A.G.-L., L.N.); eugenio.butelli@jic.ac.uk.
3: Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, 95024 Acireale, Italy (C.L., G.R.-R.); eugenio.butelli@jic.ac.uk.
4: Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, 95123 Catania, Italy (G.L.C.); eugenio.butelli@jic.ac.uk.
5: United States Department of Agriculture-Agricultural Research Service National Clonal Germplasm Repository for Citrus and Dates, Riverside, California 92507-5437 (M.L.K., R.K.); eugenio.butelli@jic.ac.uk.
6: University of California, Riverside, California 92521 (C.R.); eugenio.butelli@jic.ac.uk.
7: Key Laboratory of Horticultural Plant Biology of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China (Q.X., X.D.); eugenio.butelli@jic.ac.uk.
8: Institut National de la Recherche Agronomique, UR1115 PSH, F-84914 Avignon, France (A.-L.F.); and eugenio.butelli@jic.ac.uk.
9: CIRAD, Unité Mixte de Recherche AGAP, Station Institut National de la Recherche Agronomique, F-20230 San Giuliano, France (Y.F.) eugenio.butelli@jic.ac.uk.
10: John Innes Centre, Norwich NR4 7UH, United Kingdom (E.B., L.H., C.M.).
11: Instituto Valenciano de Investigaciones Agrarias, 46113 Moncada, Valencia, Spain (A.G.-L., L.N.).
12: Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, 95024 Acireale, Italy (C.L., G.R.-R.).
13: Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, 95123 Catania, Italy (G.L.C.).
14: United States Department of Agriculture-Agricultural Research Service National Clonal Germplasm Repository for Citrus and Dates, Riverside, California 92507-5437 (M.L.K., R.K.).
15: University of California, Riverside, California 92521 (C.R.).
16: Key Laboratory of Horticultural Plant Biology of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China (Q.X., X.D.).
17: Institut National de la Recherche Agronomique, UR1115 PSH, F-84914 Avignon, France (A.-L.F.); and.
18: CIRAD, Unité Mixte de Recherche AGAP, Station Institut National de la Recherche Agronomique, F-20230 San Giuliano, France (Y.F.).
19: John Innes Centre, Norwich NR4 7UH, United Kingdom (Y.Z., R.D.S., M.Ro., E.B., K.B., L.H., M.Re., C.M., H.S.); andDepartment of Soil, Plant, Environmental, and Animal Sciences, University of Naples Federico II, 80138 Naples, Italy (R.D.S.).
20: Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, People's Republic of China (Y.Z., J.D., L.W., Z.P., Q.X., S.X., X.D.); andInstitute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850 (S.X.).
21: Department of Agriculture, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, 10095 Grugliasco, Italy (A.M., S.L., C.Co.);John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (L.H., D.K., S.B., C.M.); andDepartment of Drug Science and Technology, University of Torino, 10125 Turin, Italy (C.Ca., P.R.) cathie.martin@jic.ac.uk.

Articles cited by this

MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol (2011) 220.97

A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol (1980) 113.75

The significance of responses of the genome to challenge. Science (1984) 11.29

The paleontology of intergene retrotransposons of maize. Nat Genet (1998) 8.55

Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol (2001) 7.44

The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol (2001) 6.86

Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci (2005) 4.26

Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell (1986) 3.77

MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci (2005) 3.35

Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J (2006) 3.33

Retrotransposon-induced mutations in grape skin color. Science (2004) 3.16

Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell (1999) 3.10

Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J (2008) 3.04

Regulatory Genes Controlling Anthocyanin Pigmentation Are Functionally Conserved among Plant Species and Have Distinct Sets of Target Genes. Plant Cell (1993) 2.95

The draft genome of sweet orange (Citrus sinensis). Nat Genet (2012) 2.81

A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell (2006) 2.63

Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol (2014) 2.53

pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J (2009) 2.26

SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Syst Biol (2011) 2.18

Single gene-mediated shift in pollinator attraction in Petunia. Plant Cell (2007) 1.91

A Phylogenetic Analysis of 34 Chloroplast Genomes Elucidates the Relationships between Wild and Domestic Species within the Genus Citrus. Mol Biol Evol (2015) 1.79

Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol (2008) 1.68

Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. Nucleic Acids Res (2011) 1.53

Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell (2012) 1.52

Oranges and lemons: clues to the taxonomy of Citrus from molecular markers. Trends Genet (2001) 1.45

The rate and pattern of nucleotide substitution in Drosophila mitochondrial DNA. Mol Biol Evol (1992) 1.40

A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the 'true citrus fruit trees' group (Citrinae, Rutaceae) and the origin of cultivated species. Ann Bot (2012) 1.36

A molecular phylogeny of the orange subfamily(Rutaceae: Aurantioideae) using nine cpDNA sequences. Am J Bot (2009) 1.31

Phylogenetic relationships of citrus and its relatives based on matK gene sequences. PLoS One (2013) 1.13

Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nat Plants (2016) 0.94

Next generation haplotyping to decipher nuclear genomic interspecific admixture in Citrus species: analysis of chromosome 2. BMC Genet (2014) 0.93

A six nuclear gene phylogeny of Citrus (Rutaceae) taking into account hybridization and lineage sorting. PLoS One (2013) 0.88

Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers. Ann Bot (2016) 0.87

Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern citrus varieties. PLoS One (2015) 0.87

Sources of antioxidant activity in Australian native fruits. Identification and quantification of anthocyanins. J Agric Food Chem (2006) 0.81

Citrus (Rutaceae) SNP markers based on Competitive Allele-Specific PCR; transferability across the Aurantioideae subfamily. Appl Plant Sci (2013) 0.81

Genome-wide analysis of the R2R3-MYB transcription factor gene family in sweet orange (Citrus sinensis). Mol Biol Rep (2014) 0.79

Studies on Unstable Characters in Petunia. I. the Extreme Flower Types of the Unstable Race with Mosaic Color Patterns. Genetics (1935) 0.77

Characterization of anthocyanins and pyranoanthocyanins from blood orange [Citrus sinensis (L.) Osbeck] juice. J Agric Food Chem (2004) 0.77

Anthocyanins in different Citrus species: an UHPLC-PDA-ESI/MS(n) -assisted qualitative and quantitative investigation. J Sci Food Agric (2016) 0.76

Mutable genes in the light of Callan's hypothesis of serially repeated gene copies. Nature (1967) 0.76