The Activation Pathway of Human Rhodopsin in Comparison to Bovine Rhodopsin.

PubWeight™: 0.76‹?›

🔗 View Article (PMID 26105054)

Published in J Biol Chem on June 23, 2015

Authors

Roman Kazmin1, Alexander Rose2, Michal Szczepek3, Matthias Elgeti4, Eglof Ritter5, Ronny Piechnick4, Klaus Peter Hofmann6, Patrick Scheerer7, Peter W Hildebrand2, Franz J Bartl8

Author Affiliations

1: From the Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, 10115 Berlin, Germany, and.
2: From the Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, AG ProteInformatics, Charitéplatz 1, 10117 Berlin, Germany.
3: From the Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, AG Protein X-ray Crystallography and Signal Transduction, and.
4: From the Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin.
5: Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, 10115 Berlin, Germany, and eglof.ritter@hu-berlin.de.
6: From the Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Zentrum für Biophysik und Bioinformatik (BPI), Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
7: From the Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, AG Protein X-ray Crystallography and Signal Transduction, and patrick.scheerer@charite.de.
8: From the Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, franz.bartl@charite.de.

Articles cited by this

GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J Chem Theory Comput (2008) 34.90

Canonical sampling through velocity rescaling. J Chem Phys (2007) 12.40

Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J (1997) 9.60

Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins (2010) 9.43

Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Sci (1997) 7.92

The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. J Mol Biol (2004) 7.38

Crystal structure of metarhodopsin II. Nature (2011) 5.05

Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes. Biochemistry (1983) 3.30

Isolation and nucleotide sequence of the gene encoding human rhodopsin. Proc Natl Acad Sci U S A (1984) 3.27

Infrared spectroscopy of proteins. Biochim Biophys Acta (2007) 3.19

A G protein-coupled receptor at work: the rhodopsin model. Trends Biochem Sci (2009) 2.98

Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant. Science (1995) 2.39

A single amino acid substitution in rhodopsin (lysine 248----leucine) prevents activation of transducin. J Biol Chem (1988) 2.37

Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation. Proc Natl Acad Sci U S A (2003) 2.21

g_membed: Efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J Comput Chem (2010) 2.08

Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit. Proc Natl Acad Sci U S A (2007) 2.07

Maximal rate and nucleotide dependence of rhodopsin-catalyzed transducin activation: initial rate analysis based on a double displacement mechanism. J Biol Chem (2000) 1.93

Local peptide movement in the photoreaction intermediate of rhodopsin. Proc Natl Acad Sci U S A (2006) 1.92

Crystallographic analysis of primary visual photochemistry. Angew Chem Int Ed Engl (2006) 1.87

Sequence of late molecular events in the activation of rhodopsin. Proc Natl Acad Sci U S A (2007) 1.85

Multiple switches in G protein-coupled receptor activation. Trends Pharmacol Sci (2009) 1.83

Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature (2010) 1.79

Two protonation switches control rhodopsin activation in membranes. Proc Natl Acad Sci U S A (2008) 1.74

Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature (1994) 1.73

Structural waters define a functional channel mediating activation of the GPCR, rhodopsin. Proc Natl Acad Sci U S A (2009) 1.65

Recreating a functional ancestral archosaur visual pigment. Mol Biol Evol (2002) 1.62

FTIR analysis of GPCR activation using azido probes. Nat Chem Biol (2009) 1.52

Lifting the lid on GPCRs: the role of extracellular loops. Br J Pharmacol (2012) 1.50

Time-resolved rhodopsin activation currents in a unicellular expression system. Biophys J (1999) 1.49

Fourier-transform infrared spectroscopy applied to rhodopsin. The problem of the protonation state of the retinylidene Schiff base re-investigated. Eur J Biochem (1983) 1.46

Dynamics of water molecules in the bacteriorhodopsin trimer in explicit lipid/water environment. Biophys J (2004) 1.41

The extracellular loop 2 (ECL2) of the human histamine H4 receptor substantially contributes to ligand binding and constitutive activity. PLoS One (2015) 1.40

Temperature and pH dependence of the metarhodopsin I-metarhodopsin II kinetics and equilibria in bovine rod disk membrane suspensions. Biochemistry (1984) 1.37

Effects of temperature on rhodopsin photointermediates from lumirhodopsin to metarhodopsin II. Biochemistry (1993) 1.21

Rhodopsin-lumirhodopsin phototransition of bovine rhodopsin investigated by Fourier transform infrared difference spectroscopy. Biochemistry (1988) 1.18

Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat Commun (2014) 1.16

Rhodopsin flash photolysis in man. J Physiol (1975) 1.15

Analysis of disease-linked rhodopsin mutations based on structure, function, and protein stability calculations. J Mol Biol (2010) 1.10

Sequential rearrangement of interhelical networks upon rhodopsin activation in membranes: the Meta II(a) conformational substate. J Am Chem Soc (2010) 0.99

Conserved Tyr223(5.58) plays different roles in the activation and G-protein interaction of rhodopsin. J Am Chem Soc (2011) 0.99

Photolysis of rhodopsin results in deprotonation of its retinal Schiff's base prior to formation of metarhodopsin II. Photochem Photobiol (1992) 0.99

Insights into congenital stationary night blindness based on the structure of G90D rhodopsin. EMBO Rep (2013) 0.95

Evidence for the specific interaction of a lipid molecule with rhodopsin which is altered in the transition to the active state metarhodopsin II. FEBS Lett (1998) 0.90

FTIR spectroscopy of complexes formed between metarhodopsin II and C-terminal peptides from the G-protein alpha- and gamma-subunits. FEBS Lett (2000) 0.89

Voronoia4RNA--a database of atomic packing densities of RNA structures and their complexes. Nucleic Acids Res (2012) 0.85

Monitoring the conformational changes of photoactivated rhodopsin from microseconds to seconds by transient fluorescence spectroscopy. Biochemistry (2008) 0.84

Structural and functional role of helices I and II in rhodopsin. A novel interplay evidenced by mutations at Gly-51 and Gly-89 in the transmembrane domain. J Biol Chem (2003) 0.81

Interaction of a G protein-coupled receptor with a G protein-derived peptide induces structural changes in both peptide and receptor: a Fourier-transform infrared study using isotopically labeled peptides. J Mol Biol (2006) 0.81

Spectral tuning of ultraviolet cone pigments: an interhelical lock mechanism. J Am Chem Soc (2013) 0.81

Steric and electronic influences on the torsional energy landscape of retinal. Biophys J (2011) 0.79

Photolysis intermediates of human rhodopsin. Biochemistry (1991) 0.77

Interaction between photoactivated rhodopsin and the C-terminal peptide of transducin alpha-subunit studied by FTIR spectroscopy. Biochemistry (1998) 0.76

Low-Temperature Trapping of Photointermediates of the Rhodopsin E181Q Mutant. SOJ Biochem (2015) 0.76