Published in Gene on January 01, 1986
Development of a fungal transformation system based on selection of sequences with promoter activity. Mol Cell Biol (1987) 2.28
Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway. Microbiol Rev (1991) 2.00
Cloning and characterization of the trpC gene from an aflatoxigenic strain of Aspergillus parasiticus. Appl Environ Microbiol (1989) 1.09
Phycomyces blakesleeanus TRP1 gene: organization and functional complementation in Escherichia coli and Saccharomyces cerevisiae. Mol Cell Biol (1987) 0.80
Transformation of yeast. Proc Natl Acad Sci U S A (1978) 46.46
A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet (1984) 35.54
A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene (1987) 19.68
5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol (1987) 17.67
Nonfilamentous C. albicans mutants are avirulent. Cell (1997) 13.83
Psychophysiological and modulatory interactions in neuroimaging. Neuroimage (1997) 13.51
Yeast: an experimental organism for modern biology. Science (1988) 12.05
Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell (1992) 10.94
Ploidy regulation of gene expression. Science (1999) 9.98
Early Events in the Infection of Soybean (Glycine max L. Merr) by Rhizobium japonicum: I. LOCALIZATION OF INFECTIBLE ROOT CELLS. Plant Physiol (1980) 9.96
Ty elements transpose through an RNA intermediate. Cell (1985) 9.56
A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc Natl Acad Sci U S A (1976) 9.04
Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science (1994) 8.59
A short nucleotide sequence required for regulation of HIS4 by the general control system of yeast. Cell (1983) 8.31
Two genes required for cell fusion during yeast conjugation: evidence for a pheromone-induced surface protein. Mol Cell Biol (1987) 7.38
Gene conversion between duplicated genetic elements in yeast. Nature (1981) 7.14
DNA rearrangements associated with a transposable element in yeast. Cell (1980) 7.03
Curing of a killer factor in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A (1972) 7.02
Positive regulation in the general amino acid control of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A (1983) 6.93
Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev (1994) 6.92
Repeated DNA sequences upstream from HIS1 also occur at several other co-regulated genes in Saccharomyces cerevisiae. J Biol Chem (1983) 6.88
KAR1, a gene required for function of both intranuclear and extranuclear microtubules in yeast. Cell (1987) 6.70
The nucleotide sequence of the HIS4 region of yeast. Gene (1982) 6.70
Integration of amino acid biosynthesis into the cell cycle of Saccharomyces cerevisiae. J Mol Biol (1975) 6.65
Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci (2001) 6.41
Neurostimulation for Parkinson's disease with early motor complications. N Engl J Med (2013) 6.37
Insertion of the eukaryotic transposable element Ty1 creates a 5-base pair duplication. Nature (1980) 6.11
Identification of chromosomal location of yeast DNA from hybrid plasmid p Yeleu 10. Nature (1977) 6.07
EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev (1998) 6.06
Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature (1986) 6.01
A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev (1995) 5.92
Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science (1993) 5.86
Eviction and transplacement of mutant genes in yeast. Methods Enzymol (1983) 5.71
Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics (1984) 5.64
Positive regulatory interactions of the HIS4 gene of Saccharomyces cerevisiae. Mol Cell Biol (1984) 5.08
Ultrastructural effects of Helminthosporium maydis race T toxin on mitochondria of corn roots and protoplasts. Tissue Cell (1977) 4.90
FUS3 encodes a cdc2+/CDC28-related kinase required for the transition from mitosis into conjugation. Cell (1990) 4.89
The relationship between the "TATA" sequence and transcription initiation sites at the HIS4 gene of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A (1985) 4.87
The glyoxylate cycle is required for fungal virulence. Nature (2001) 4.70
MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell (1997) 4.69
Combinatorial control required for the specificity of yeast MAPK signaling. Science (1997) 4.67
Anaerobic nitrite production by plant cells and tissues: evidence for two nitrate pools. Plant Physiol (1973) 4.55
Yeast killer mutants with altered double-stranded ribonucleic acid. J Bacteriol (1974) 4.48
Multiple global regulators control HIS4 transcription in yeast. Science (1987) 4.44
A cluster of genes controlling three enzymes in histidine biosynthesis in Saccharomyces cerevisiae. Genetics (1966) 4.40
Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics (1996) 4.39
Bakers' yeast, a model for fungal biofilm formation. Science (2001) 4.37
The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca2+ ATPase family. Cell (1989) 4.19
Ty element transposition: reverse transcriptase and virus-like particles. Cell (1985) 4.19
A stable aneuploid of Saccharomyces cerevisiae. Genetics (1971) 4.16
Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol (1994) 4.13
A synthetic HIS4 regulatory element confers general amino acid control on the cytochrome c gene (CYC1) of yeast. Proc Natl Acad Sci U S A (1985) 4.13
The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell (1984) 4.07
Properties of yeast transformation. Cold Spring Harb Symp Quant Biol (1979) 4.05
Frameshifts and frameshift suppressors in Saccharomyces cerevisiae. Genetics (1977) 3.86
The origins of gene instability in yeast. Science (1980) 3.85
Histidine regulatory mutants in Salmonella typhimurium 3. A class of regulatory mutants deficient in tRNA for histidine. J Mol Biol (1966) 3.80
TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell Biol (1988) 3.79
Pseudogenes in yeast? Cell (1987) 3.78
GCN4 protein, a positive transcription factor in yeast, binds general control promoters at all 5' TGACTC 3' sequences. Proc Natl Acad Sci U S A (1986) 3.68
Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc Natl Acad Sci U S A (1996) 3.65
Regulated degradation of the transcription factor Gcn4. EMBO J (1994) 3.64
Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A (1996) 3.61
Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J Cell Biol (1994) 3.59
BAS1 has a Myb motif and activates HIS4 transcription only in combination with BAS2. Science (1989) 3.54
Mitotic recombination in the rDNA of S. cerevisiae is suppressed by the combined action of DNA topoisomerases I and II. Cell (1988) 3.54
The NUP1 gene encodes an essential component of the yeast nuclear pore complex. Cell (1990) 3.52
Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae. Mol Biol Cell (1994) 3.50
Tryptophan-Requiring Mutants of the Plant Arabidopsis thaliana. Science (1988) 3.47
Electron microscopic heteroduplex analysis of "killer" double-stranded RNA species from yeast. Proc Natl Acad Sci U S A (1978) 3.43
Genetic events associated with an insertion mutation in yeast. Cell (1980) 3.40
The yeast Ca(2+)-ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution. Mol Biol Cell (1992) 3.35
Movement of yeast transposable elements by gene conversion. Proc Natl Acad Sci U S A (1982) 3.35
The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci U S A (1998) 3.33
Two anthranilate synthase genes in Arabidopsis: defense-related regulation of the tryptophan pathway. Plant Cell (1992) 3.32
Gene conversion of deletions in the his4 region of yeast. Genetics (1974) 3.26
A suppressor of a HIS4 transcriptional defect encodes a protein with homology to the catalytic subunit of protein phosphatases. Cell (1989) 3.26
Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc Natl Acad Sci U S A (1993) 3.23
Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol Cell Biol (1996) 3.19
Meiotic recombination between duplicated genetic elements in Saccharomyces cerevisiae. Genetics (1985) 3.19
Regulation of HIS4-lacZ fusions in Saccharomyces cerevisiae. Mol Cell Biol (1982) 3.07
BIK1, a protein required for microtubule function during mating and mitosis in Saccharomyces cerevisiae, colocalizes with tubulin. J Cell Biol (1990) 3.04
Mind reading: neural mechanisms of theory of mind and self-perspective. Neuroimage (2001) 3.03
Two microtubule-associated proteins required for anaphase spindle movement in Saccharomyces cerevisiae. J Cell Biol (1995) 3.02
The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell (1986) 2.99
Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron (2001) 2.98
SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription. Mol Cell Biol (1995) 2.97
The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci U S A (1999) 2.96
Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci U S A (2003) 2.93
Tryptophan mutants in Arabidopsis: the consequences of duplicated tryptophan synthase beta genes. Plant Cell (1991) 2.93
The control of filamentous differentiation and virulence in fungi. Trends Cell Biol (1998) 2.93
Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell (1995) 2.90
A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci U S A (2000) 2.82
FUS3 represses CLN1 and CLN2 and in concert with KSS1 promotes signal transduction. Proc Natl Acad Sci U S A (1991) 2.79
Isolation of DNA from filamentous fungi and separation into nuclear, mitochondrial, ribosomal, and plasmid components. Anal Biochem (1983) 2.78
Ty-mediated gene expression of the LYS2 and HIS4 genes of Saccharomyces cerevisiae is controlled by the same SPT genes. Proc Natl Acad Sci U S A (1984) 2.75
Temperature-sensitive nonsense suppressors in yeast. Genetics (1973) 2.75
Saccharomyces cerevisiae SPT3 gene is required for transposition and transpositional recombination of chromosomal Ty elements. Mol Cell Biol (1986) 2.71
Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics (1997) 2.67