The interplay of electrostatic fields and binding interactions determining catalytic-site reactivity in actinidin. A possible origin of differences in the behaviour of actinidin and papain.

PubWeight™: 0.92‹?›

🔗 View Article (PMC 1138529)

Published in Biochem J on April 15, 1989

Authors

D Kowlessur1, M O'Driscoll, C M Topham, W Templeton, E W Thomas, K Brocklehurst

Author Affiliations

1: Department of Biochemistry, Medical College of St. Bartholomew's Hospital (University of London), U.K.

Articles citing this

Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis. Biochem J (1991) 1.08

Variation in aspects of cysteine proteinase catalytic mechanism deduced by spectroscopic observation of dithioester intermediates, kinetic analysis and molecular dynamics simulations. Biochem J (2001) 0.91

Variation in the pH-dependent pre-steady-state and steady-state kinetic characteristics of cysteine-proteinase mechanism: evidence for electrostatic modulation of catalytic-site function by the neighbouring carboxylate anion. Biochem J (2003) 0.90

A re-appraisal of the structural basis of stereochemical recognition in papain. Insensitivity of binding-site-catalytic-site signalling to P2-chirality in a time-dependent inhibition. Biochem J (1990) 0.90

Evaluation of hydrogen-bonding and enantiomeric P2-S2 hydrophobic contacts in dynamic aspects of molecular recognition by papain. Biochem J (1992) 0.89

Catalytic-site characteristics of the porcine calpain II 80 kDa/18 kDa heterodimer revealed by selective reaction of its essential thiol group with two-hydronic-state time-dependent inhibitors: evidence for a catalytic site Cys/His interactive system and an ionizing modulatory group. Biochem J (1993) 0.84

Variation in the P2-S2 stereochemical selectivity towards the enantiomeric N-acetylphenylalanylglycine 4-nitroanilides among the cysteine proteinases papain, ficin and actinidin. Biochem J (1992) 0.84

Articles cited by this

Crystallographic studies of the activity of hen egg-white lysozyme. Proc R Soc Lond B Biol Sci (1967) 4.25

Mapping the active site of papain with the aid of peptide substrates and inhibitors. Philos Trans R Soc Lond B Biol Sci (1970) 3.29

Structure of actinidin, after refinement at 1.7 A resolution. J Mol Biol (1980) 3.16

Thiol proteases. Comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelain. J Mol Biol (1985) 3.09

A novel reactivity of papain and a convenient active site titration in the presence of other thiols. FEBS Lett (1970) 2.76

Reactivities of the various protonic states in the reactions of papain and of L-cysteine with 2,2'- and with 4,4'- dipyridyl disulphide: evidence for nucleophilic reactivity in the un-ionized thiol group of the cysteine-25 residue of papain occasioned by its interaction with the histidine-159-asparagine-175 hydrogen-bonded system. Biochem J (1972) 2.65

Preparation of fully active ficin from Ficus glabrata by covalent chromatography and characterization of its active centre by using 2,2'-depyridyl disulphide as a reactivity probe. Biochem J (1976) 2.53

Cloning and sequencing of papain-encoding cDNA. Gene (1986) 2.15

The amino acid sequence of the tryptic peptides from actinidin, a proteolytic enzyme from the fruit of Actinidia chinensis. Biochem J (1978) 1.72

Differences in the interaction of the catalytic groups of the active centres of actinidin and papain. Rapid purification of fully active actinidin by covalent chromatography and characterization of its active centre by use of two-protonic-state reactivity probes. Biochem J (1981) 1.60

Kinetic specificity in papain-catalysed hydrolyses. Biochem J (1971) 1.60

The case for assigning a value of approximately 4 to pKa-i of the essential histidine-cysteine interactive systems of papain, bromelain and ficin. FEBS Lett (1975) 1.50

Evidence for a two-state transition in papain that may have no close analogue in ficin. Differences in the disposition of cationic sites and hydrophobic binding areas in the active centres of papain and ficin. Biochem J (1980) 1.39

Supracrystallographic resolution of interactions contributing to enzyme catalysis by use of natural structural variants and reactivity-probe kinetics. Biochem J (1988) 1.35

Differences in the chemical and catalytic characteristics of two crystallographically 'identical' enzyme catalytic sites. Characterization of actinidin and papain by a combination of pH-dependent substrate catalysis kinetics and reactivity probe studies targeted on the catalytic-site thiol group and its immediate microenvironment. Biochem J (1987) 1.30

Anionic proteinase from Actinidia chinensis. Preparation and properties of the crystalline enzyme. Eur J Biochem (1970) 1.27

Mechanism of the reaction of papain with substrate-derived diazomethyl ketones. Implications for the difference in site specificity of halomethyl ketones for serine proteinases and cysteine proteinases and for stereoelectronic requirements in the papain catalytic mechanism. Biochem J (1978) 1.24

Consequences of molecular recognition in the S1-S2 intersubsite region of papain for catalytic-site chemistry. Change in pH-dependence characteristics and generation of an inverse solvent kinetic isotope effect by introduction of a P1-P2 amide bond into a two-protonic-state reactivity probe. Biochem J (1988) 1.22

A marked gradation in active-centre properties in the cysteine proteinases revealed by neutral and anionic reactivity probes. Reactivity characteristics of the thiol groups of actinidin, ficin, papain and papaya peptidase A towards 4,4'-dipyridyl disulphide and 5,5'-dithiobis-(2-nitrobenzoate) dianion. Biochem J (1983) 1.21

Substrate-derived two-protonic-state electrophiles as sensitive kinetic specificity probes for cysteine proteinases. Activation of 2-pyridyl disulphides by hydrogen-bonding. Biochem J (1987) 1.17

Mechanism of Action of papain with a specific anilide substrate. Biochemistry (1979) 1.17

Cryoenzymology of papain: reaction mechanism with an ester substrate. Biochemistry (1978) 1.16

Investigation of the catalytic site of actinidin by using benzofuroxan as a reactivity probe with selectivity for the thiolate-imidazolium ion-pair systems of cysteine proteinases. Evidence that the reaction of the ion-pair of actinidin (pKI 3.0, pKII 9.6) is modulated by the state of ionization of a group associated with a molecular pKa of 5.5. Biochem J (1983) 1.11

Intramolecular inhibition by enzyme of site-specific modification reactions can mask pKa values characteristic of the reaction pathway: do the side chains of aspartic acid-158 and lysine-156 of papain form an ion-pair? [proceedings]. Biochem Soc Trans (1978) 1.09

The organization and function of water in protein crystals. Philos Trans R Soc Lond B Biol Sci (1977) 1.07

The electrostatic fields in the active-site clefts of actinidin and papain. Biochem J (1988) 1.07

A rapid method of calculating charge-charge interaction energies in proteins. Protein Eng (1988) 1.03

Mechanism of thiol protease catalysis: detection and stabilization of a tetrahedral intermediate in papain catalysis. Biochemistry (1979) 1.01

Dependence of the catalytic activity of papain on the ionization of two acidic groups. J Biol Chem (1978) 0.99

Differences between the electric fields of the catalytic sites of papain and actinidin detected by using the thiol-located nitrobenzofurazan label as a spectroscopic reporter group. Biochem J (1984) 0.99

Appendix: Analysis of pH-dependent kinetics in up to four reactive hydronic states. Biochem J (1988) 0.98

Benzoylamidoacetonitrile as an inhibitor of papain. Biochim Biophys Acta (1973) 0.96

The interplay of electrostatic and binding interactions determining active centre chemistry and catalytic activity in actinidin and papain. Biochem J (1989) 0.90

Ionization behavior of the catalytic carboxyls of lysozyme. Biochem Biophys Res Commun (1970) 0.87

A nuclear magnetic resonance study of enzyme-inhibitor association. The use of pH and temperature effects to probe the binding environments. Biochemistry (1968) 0.84

Structural and electrostatic differences between actinidin and papain account for differences in activity. Biochem J (1989) 0.83

Articles by these authors

Reactions of papain and of low-molecular-weight thiols with some aromatic disulphides. 2,2'-Dipyridyl disulphide as a convenient active-site titrant for papain even in the presence of other thiols. Biochem J (1973) 3.33

A reporter group delivery system with both absolute and selective specificity for thiol groups and an improved fluorescent probe containing the 7-nitrobenzo-2-oxa-1,3-diazole moiety. Biochem J (1975) 3.17

Covalent chromatography. Preparation of fully active papain from dried papaya latex. Biochem J (1973) 2.79

Reactivities of the various protonic states in the reactions of papain and of L-cysteine with 2,2'- and with 4,4'- dipyridyl disulphide: evidence for nucleophilic reactivity in the un-ionized thiol group of the cysteine-25 residue of papain occasioned by its interaction with the histidine-159-asparagine-175 hydrogen-bonded system. Biochem J (1972) 2.65

Randomised comparison of olsalazine and mesalazine in prevention of relapses in ulcerative colitis. Lancet (1992) 2.63

Preparation of fully active ficin from Ficus glabrata by covalent chromatography and characterization of its active centre by using 2,2'-depyridyl disulphide as a reactivity probe. Biochem J (1976) 2.53

Osteomalacia in rheumatoid arthritis. Ann Rheum Dis (1980) 2.21

A necessary modification to the preparation of papain from any high-quality latex of Carica papaya and evidence for the structural integrity of the enzyme produced by traditional methods. Biochem J (1979) 2.20

Specific covalent modification of thiols: applications in the study of enzymes and other biomolecules. Int J Biochem (1979) 2.11

PH-dependence of the steady-state rate of a two-step enzymic reaction. Biochem J (1976) 2.08

The equilibrium assumption is valid for the kinetic treatment of most time-dependent protein-modification reactions. Biochem J (1979) 1.82

4-Chloro-7-nitrobenzo-2-oxa-1,3-diazole as a reactivity probe for the investigation of the thiol proteinases. evidence that ficin and bromelain may lack carboxyl groups conformationally equivalent to that of aspartic acid-158 of papain. Biochem J (1976) 1.77

The pH-dependence of second-order rate constants of enzyme modification may provide free-reactant pKa values. Biochem J (1977) 1.73

Two-protonic-state electrophiles as probes of enzyme mechanisms. Methods Enzymol (1982) 1.70

Cobalt toxicity after McKee hip arthroplasty. J Bone Joint Surg Br (1975) 1.68

Covalent chromatography by thiol-disulfide interchange. Methods Enzymol (1974) 1.61

Differences in the interaction of the catalytic groups of the active centres of actinidin and papain. Rapid purification of fully active actinidin by covalent chromatography and characterization of its active centre by use of two-protonic-state reactivity probes. Biochem J (1981) 1.60

A spectrophotometric method for the detection of contaminant chymopapains in preparations of papain. Selective modification of one type of thiol group in the chymopapains by a two-protonic-state reagent. Biochem J (1978) 1.52

Kinetics of the reversible reaction of papain with 5,5'-dithiobis-(2-nitrobenzoate) dianion: evidence for nucleophilic reactivity in the un-ionized thiol group of cysteine-25 and for general acid catalysis by histidine-159 of the reaction of the 5-mercapto-2-nitrobenzoate dianion with the papain-5-mercapto-2-nitrobenzoate mixed disulphide. Biochem J (1972) 1.52

The case for assigning a value of approximately 4 to pKa-i of the essential histidine-cysteine interactive systems of papain, bromelain and ficin. FEBS Lett (1975) 1.50

Kinetics of the hydrolysis of N-benzoyl-L-serine methyl ester catalysed by bromelain and by papain. Analysis of modifier mechanisms by lattice nomography, computational methods of parameter evaluation for substrate-activated catalyses and consequences of postulated non-productive binding in bromelain- and papain-catalysed hydrolyses. Biochem J (1974) 1.47

In defence of the general validity of the Cha method of deriving rate equations. The importance of explicit recognition of the thermodynamic box in enzyme kinetics. Biochem J (1992) 1.45

Evidence that the active centre of chymopapain A is different from the active centres of some other cysteine proteinases and that the Brønsted coefficient (beta nuc.) for the reactions of thiolate anions with 2,2'-dipyridyl disulphide may be decreased by reagent protonation. Biochem J (1980) 1.44

The mutability of stem bromelain: evidence for perturbation by structural transitions of the parameters that characterize the reaction of the essential thiol group of bromelain with 2,2'-dipyridyl disulphide. Biochem J (1972) 1.42

Evidence for a two-state transition in papain that may have no close analogue in ficin. Differences in the disposition of cationic sites and hydrophobic binding areas in the active centres of papain and ficin. Biochem J (1980) 1.39

Rapid Treatment of Early Syphilis with Multiple Injections of Mapharsen: Preliminary Report of 275 Cases Treated with Mapharsen Alone and 141 Cases Treated with Mapharsen and Fever. Am J Public Health Nations Health (1941) 1.39

Cheese Itch: Contact Dermatitis due to Mite-infested Cheese Dust. Br Med J (1942) 1.39

The activity of the tissue inhibitors of metalloproteinases is regulated by C-terminal domain interactions: a kinetic analysis of the inhibition of gelatinase A. Biochemistry (1993) 1.36

A re-evaluation of the nomenclature of the cysteine proteinases of Carica papaya and a rational basis for their identification. Biochem J (1983) 1.35

Supracrystallographic resolution of interactions contributing to enzyme catalysis by use of natural structural variants and reactivity-probe kinetics. Biochem J (1988) 1.35

Evidence that binding to the s2-subsite of papain may be coupled with catalytically relevant structural change involving the cysteine-25-histidine-159 diad. Kinetics of the reaction of papain with a two-protonic-state reactivity probe containing a hydrophobic side chain. Biochem J (1979) 1.31

Benzofuroxan as a thiol-specific reactivity probe. Kinetics of its reactions with papain, ficin, bromelain and low-molecular-weight thiols. Biochem J (1977) 1.31

Differences in the chemical and catalytic characteristics of two crystallographically 'identical' enzyme catalytic sites. Characterization of actinidin and papain by a combination of pH-dependent substrate catalysis kinetics and reactivity probe studies targeted on the catalytic-site thiol group and its immediate microenvironment. Biochem J (1987) 1.30

Unmasking a killer: DNA O(6)-methylguanine and the cytotoxicity of methylating agents. Mutat Res (2000) 1.29

A classical enzyme active center motif lacks catalytic competence until modulated electrostatically. Biochemistry (1997) 1.26

Preparation of cathepsins B and H by covalent chromatography and characterization of their catalytic sites by reaction with a thiol-specific two-protonic-state reactivity probe. Kinetic study of cathepsins B and H extending into alkaline media and a rapid spectroscopic titration of cathepsin H at pH 3-4. Biochem J (1985) 1.26

The reaction of papain with Ellman's reagent (5,5'-dithiobis- (2-nitrobenzoate) dianion). Biochem J (1972) 1.25

Characterization of papaya peptidase A as a cysteine proteinase of Carica papaya L. with active-centre properties that differ from those of papain by using 2,2'-dipyridyl disulphide and 4-chloro-7-nitrobenzofurazan as reactivity probes. Use of two-protonic-state electrophiles in the identification of catalytic-site thiol groups. Biochem J (1982) 1.24

Mechanism of the reaction of papain with substrate-derived diazomethyl ketones. Implications for the difference in site specificity of halomethyl ketones for serine proteinases and cysteine proteinases and for stereoelectronic requirements in the papain catalytic mechanism. Biochem J (1978) 1.24

A general framework of cysteine-proteinase mechanism deduced from studies on enzymes with structurally different analogous catalytic-site residues Asp-158 and -161 (papain and actinidin), Gly-196 (cathepsin B) and Asn-165 (cathepsin H). Kinetic studies up to pH 8 of the hydrolysis of N-alpha-benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide catalysed by cathepsin B and of L-arginine 2-naphthylamide catalysed by cathepsin H. Biochem J (1985) 1.23

The preparation and some properties of bromelain covalently attached to O-(carboxymethyl)-cellulose. Eur J Biochem (1968) 1.22

Consequences of molecular recognition in the S1-S2 intersubsite region of papain for catalytic-site chemistry. Change in pH-dependence characteristics and generation of an inverse solvent kinetic isotope effect by introduction of a P1-P2 amide bond into a two-protonic-state reactivity probe. Biochem J (1988) 1.22

A marked gradation in active-centre properties in the cysteine proteinases revealed by neutral and anionic reactivity probes. Reactivity characteristics of the thiol groups of actinidin, ficin, papain and papaya peptidase A towards 4,4'-dipyridyl disulphide and 5,5'-dithiobis-(2-nitrobenzoate) dianion. Biochem J (1983) 1.21

Reactivities of neutral and cationic forms of 2,2'-dipyridyl disulphide towards thiolate anions. Detection of differences between the active centres of actinidin, papain and ficin by a three-protonic-state reactivity probe. Biochem J (1979) 1.19

Effects of conformational selectivity and of overlapping kinetically influential ionizations on the characteristics of pH-dependent enzyme kinetics. Implications of free-enzyme pKa variability in reactions of papain for its catalytic mechanism. Biochem J (1983) 1.19

Natural structural variation in enzymes as a tool in the study of mechanism exemplified by a comparison of the catalytic-site structure and characteristics of cathepsin B and papain. pH-dependent kinetics of the reactions of cathepsin B from bovine spleen and from rat liver with a thiol-specific two-protonic-state probe (2,2'-dipyridyl disulphide) and with a specific synthetic substrate (N-alpha-benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide). Biochem J (1984) 1.19

Immobilization of urease by thiol-disulphide interchange with concomitant purification. Eur J Biochem (1974) 1.19

A convenient method of preparation of high-activity urease from Canavalia ensiformis by covalent chromatography and an investigation of its thiol groups with 2,2'-dipyridyl disulphide as a thiol titrant and reactivity probe. Biochem J (1976) 1.19

Evaluation of benzofuroxan as a chromophoric oxidizing agent for thiol groups by using its reactions with papain, ficin, bromelain and low-molecular-weight thiols. Biochem J (1977) 1.18

Substrate-derived two-protonic-state electrophiles as sensitive kinetic specificity probes for cysteine proteinases. Activation of 2-pyridyl disulphides by hydrogen-bonding. Biochem J (1987) 1.17

Propapain and its conversion to papain: a new type of zymogen activation mechanism involving intramolecular thiol-disulphide interchange. Nat New Biol (1973) 1.17

The clinical and biological overlap between Nijmegen Breakage Syndrome and Fanconi anemia. Clin Immunol (2004) 1.15

Injury, serum lipids, fat embolism, and clofibrate. Br Med J (1967) 1.15

Cefsulodin kinetics in healthy subjects after intramuscular and intravenous injection. Clin Pharmacol Ther (1982) 1.14

Fresh non-fruit latex of Carica papaya contains papain, multiple forms of chymopapain A and papaya proteinase omega. Biochem J (1985) 1.12

The pre-eminence of k(cat) in the manifestation of optimal enzymic activity delineated by using the Briggs-Haldane two-step irreversible kinetic model. Biochem J (1976) 1.12

Frontal Lobe Abscess Treated with Penicillin. Br Med J (1946) 1.11

Genetic variants of NHEJ DNA ligase IV can affect the risk of developing multiple myeloma, a tumour characterised by aberrant class switch recombination. J Med Genet (2002) 1.11

Investigation of the catalytic site of actinidin by using benzofuroxan as a reactivity probe with selectivity for the thiolate-imidazolium ion-pair systems of cysteine proteinases. Evidence that the reaction of the ion-pair of actinidin (pKI 3.0, pKII 9.6) is modulated by the state of ionization of a group associated with a molecular pKa of 5.5. Biochem J (1983) 1.11

Intramolecular inhibition by enzyme of site-specific modification reactions can mask pKa values characteristic of the reaction pathway: do the side chains of aspartic acid-158 and lysine-156 of papain form an ion-pair? [proceedings]. Biochem Soc Trans (1978) 1.09

A general kinetic equation for multihydronic state reactions and rapid procedures for parameter evaluation. Biochem Soc Trans (1990) 1.09

Alternative methods for the determination of rate constants describing enzyme inactivation by an unstable inhibitor. Biochem J (1987) 1.09

pH-activity curves for enzyme-catalysed reactions in which the hydron is a product or reactant. Biochem J (1987) 1.08

Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis. Biochem J (1991) 1.08

The nature of the perturbation of the michaelis constant of the bromelain-catalysed hydrolysis of alpha-N-benzoyl-L-arginine ethyl ester consequent upon attachment of bromelain to O-(carboxymethyl)-cellulose. Eur J Biochem (1968) 1.05

Reactions of L-ergothioneine and some other aminothiones with2,2'-and 4,4'-dipyridyl disulphides and of L-ergothioneine with iodoacetamide. 2-Mercaptoimidazoles, 2- and 4-thiopyridones, thiourea and thioacetamide as highly reactive neutral sulphur nucleophils. Biochem J (1974) 1.05

Identification of signalling and non-signalling binding contributions to enzyme reactivity. Alternative combinations of binding interactions provide for change in transition-state geometry in reactions of papain. Biochem J (1989) 1.04

A polyclonal antibody preparation with Michaelian catalytic properties. Biochem J (1991) 1.03

Evolution of enzyme catalytic power. Characteristics of optimal catalysis evaluated for the simplest plausible kinetic model. Biochem J (1977) 1.02

'Chymopapain S' is chymopapain A. Biochem J (1984) 1.02

Chemical modification of sheep-liver 6-phosphogluconate dehydrogenase by diethylpyrocarbonate. Evidence for an essential histidine residue. Eur J Biochem (1986) 1.02

Biochemical and X-ray crystallographic studies on shikimate kinase: the important structural role of the P-loop lysine. Protein Sci (2001) 1.02

Ionization characteristics of the Cys-25/His-159 interactive system and of the modulatory group of papain: resolution of ambiguity by electronic perturbation of the quasi-2-mercaptopyridine leaving group in a new pyrimidyl disulphide reactivity probe. Biochem J (1993) 1.01

Enzymatically active papain preferentially induces an allergic response in mice. Biochem Biophys Res Commun (1998) 1.01

D-3-hydroxybutyrate dehydrogenase from Rhodopseudomonas spheroides. Kinetic mechanism from steady-state kinetics of the reaction catalysed by the enzyme in solution and covalently attached to diethylaminoethylcellulose. Biochem J (1973) 1.01

Vestibular disease unmasked by hyperventilation. Laryngoscope (1998) 1.00

Comparative studies on the 5-aminolaevulinic acid dehydratases from Pisum sativum, Escherichia coli and Saccharomyces cerevisiae. Biochem J (1996) 0.99

Differences between the electric fields of the catalytic sites of papain and actinidin detected by using the thiol-located nitrobenzofurazan label as a spectroscopic reporter group. Biochem J (1984) 0.99

Evidence for a close similarity in the catalytic sites of papain and ficin in near-neutral media despite differences in acidic and alkaline media. Kinetics of the reactions of papain and ficin with chloroacetate. Biochem J (1982) 0.98

Self-reported benefits from successive bilateral cochlear implantation in post-lingually deafened adults: randomised controlled trial. Int J Audiol (2006) 0.98

Appendix: Analysis of pH-dependent kinetics in up to four reactive hydronic states. Biochem J (1988) 0.98

Chemical modification of enzymes: reaction with an unstable inhibitor. Biochem J (1985) 0.98

Clarification of the pH-dependent kinetic behaviour of papain by using reactivity probes and analysis of alkylation and catalysed acylation reactions in terms of multihydronic state models: implications for electrostatics calculations and interpretation of the consequences of site-specific mutations such as Asp-158-Asn and Asp-158-Glu. Biochem J (1993) 0.97