Ribosomal Antibiotics: Contemporary Challenges.

PubWeight™: 0.75‹?›

🔗 View Article (PMID 27367739)

Published in Antibiotics (Basel) on June 29, 2016

Authors

Tamar Auerbach-Nevo1, David Baram2, Anat Bashan3, Matthew Belousoff4, Elinor Breiner5, Chen Davidovich6, Giuseppe Cimicata7, Zohar Eyal8, Yehuda Halfon9, Miri Krupkin10, Donna Matzov11, Markus Metz12, Mruwat Rufayda13, Moshe Peretz14, Ophir Pick15, Erez Pyetan16, Haim Rozenberg17, Moran Shalev-Benami18, Itai Wekselman19, Raz Zarivach20, Ella Zimmerman21, Nofar Assis22, Joel Bloch23, Hadar Israeli24, Rinat Kalaora25, Lisha Lim26, Ofir Sade-Falk27, Tal Shapira28, Leena Taha-Salaime29, Hua Tang30, Ada Yonath31

Author Affiliations

1: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. tauerba@its.jnj.com.
2: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. david@smzyme.com.
3: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. anat.bashan@weizmann.ac.il.
4: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. matthew.belousoff@monash.edu.
5: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. elinor.breiner@weizmann.ac.il.
6: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. Chen.Davidovich@monash.edu.
7: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. giuseppe.cimicata@gmail.com.
8: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. zohar.baram@weizmann.ac.il.
9: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. Yehuda.Halfon@weizmann.ac.il.
10: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. Miri.Krupkin@weizmann.ac.il.
11: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. Matzov.donna@weizmann.ac.il.
12: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. markusmetz.at@gmail.com.
13: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. Rufayda.Mruwat@weizmann.ac.il.
14: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. moshe.peretz@weizmann.ac.il.
15: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. ophir.pick@gmail.com.
16: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. erezpy@gmail.com.
17: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. Haim.Rozenberg@weizmann.ac.il.
18: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. benami.moran@gmail.com.
19: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. Itai.Wekselman@weizmann.ac.il.
20: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. zarivach@bgu.ac.il.
21: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. Ella.Zimmerman@weizmann.ac.il.
22: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. nofar.assis@gmail.com.
23: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. joel.bloch@mol.biol.ethz.ch.
24: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. hadarisr@bgu.ac.il.
25: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. rinat.kalaora@gmail.com.
26: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. lishaqjl@gmail.com.
27: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. ofir.sadefalk@gmail.com.
28: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. Tal.Shapira@weizmann.ac.il.
29: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. Leena.ta.salaime@gmail.com.
30: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. hua2han2003@yahoo.com.
31: Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel. Ada.Yonath@weizmann.ac.il.

Articles cited by this

Structures of the bacterial ribosome at 3.5 A resolution. Science (2005) 12.63

Antibiotics for emerging pathogens. Science (2009) 7.39

Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature (2001) 6.40

The ribosomal exit tunnel functions as a discriminating gate. Cell (2002) 4.57

Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother (2001) 4.17

Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell (2005) 3.46

Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. J Mol Biol (2003) 2.98

Structural insight into nascent polypeptide chain-mediated translational stalling. Science (2009) 2.89

Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc Natl Acad Sci U S A (2010) 2.38

Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23 S ribosomal RNA. J Mol Biol (1999) 2.09

Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates. Mol Microbiol (2004) 2.01

Nascent peptide in the ribosome exit tunnel affects functional properties of the A-site of the peptidyl transferase center. Mol Cell (2011) 1.96

Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Mol Microbiol (2004) 1.90

Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc Natl Acad Sci U S A (2010) 1.82

Structural insight into the role of the ribosomal tunnel in cellular regulation. Nat Struct Biol (2003) 1.79

Translation arrest requires two-way communication between a nascent polypeptide and the ribosome. Mol Cell (2006) 1.74

Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol (2004) 1.68

Structural basis for the antibiotic activity of ketolides and azalides. Structure (2003) 1.64

Structural insight into the antibiotic action of telithromycin against resistant mutants. J Bacteriol (2003) 1.59

Divergent stalling sequences sense and control cellular physiology. Biochem Biophys Res Commun (2010) 1.57

The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome. Mol Microbiol (2001) 1.55

Nascent peptides that block protein synthesis in bacteria. Proc Natl Acad Sci U S A (2013) 1.52

Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity. Proc Natl Acad Sci U S A (2007) 1.46

Identification of functionally important amino acids of ribosomal protein L3 by saturation mutagenesis. Mol Cell Biol (2005) 1.39

Mutations outside the anisomycin-binding site can make ribosomes drug-resistant. J Mol Biol (2008) 1.35

Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis. Antimicrob Agents Chemother (2010) 1.27

Macrolide antibiotics in the ribosome exit tunnel: species-specific binding and action. Ann N Y Acad Sci (2011) 1.23

Molecular basis for erythromycin-dependent ribosome stalling during translation of the ErmBL leader peptide. Nat Commun (2014) 1.18

High-resolution structure of the Escherichia coli ribosome. Nat Struct Mol Biol (2015) 1.14

The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin. Nat Struct Mol Biol (2015) 1.13

The structural basis of macrolide-ribosome binding assessed using mutagenesis of 23S rRNA positions 2058 and 2059. J Mol Biol (2004) 1.12

On the specificity of antibiotics targeting the large ribosomal subunit. Ann N Y Acad Sci (2011) 1.11

Role of antibiotic ligand in nascent peptide-dependent ribosome stalling. Proc Natl Acad Sci U S A (2011) 1.07

An indigenous posttranscriptional modification in the ribosomal peptidyl transferase center confers resistance to an array of protein synthesis inhibitors. J Mol Biol (2008) 1.04

Structural basis for cross-resistance to ribosomal PTC antibiotics. Proc Natl Acad Sci U S A (2008) 1.04

The general mode of translation inhibition by macrolide antibiotics. Proc Natl Acad Sci U S A (2014) 1.00

Antibiotics acting on the translational machinery. J Cell Sci (2003) 0.98

Macrolide antibiotics allosterically predispose the ribosome for translation arrest. Proc Natl Acad Sci U S A (2014) 0.98

Solution-based circuits enable rapid and multiplexed pathogen detection. Nat Commun (2013) 0.97

Multisite ribosomal stalling: a unique mode of regulatory nascent chain action revealed for MifM. Mol Cell (2012) 0.97

Antibiotics targeting ribosomes: crystallographic studies. Curr Drug Targets Infect Disord (2002) 0.96

Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureus. Proc Natl Acad Sci U S A (2015) 0.94

Sequence-dependent elongation dynamics on macrolide-bound ribosomes. Cell Rep (2014) 0.93

Crystal structure of the synergistic antibiotic pair, lankamycin and lankacidin, in complex with the large ribosomal subunit. Proc Natl Acad Sci U S A (2011) 0.90

Negamycin interferes with decoding and translocation by simultaneous interaction with rRNA and tRNA. Mol Cell (2014) 0.89

The antibiotic thermorubin inhibits protein synthesis by binding to inter-subunit bridge B2a of the ribosome. J Mol Biol (2012) 0.88

Synergy of streptogramin antibiotics occurs independently of their effects on translation. Antimicrob Agents Chemother (2014) 0.87

Peptide-mediated macrolide resistance reveals possible specific interactions in the nascent peptide exit tunnel. Mol Microbiol (2004) 0.84

Rho's role in transcription attenuation in the tna operon of E. coli. Methods Enzymol (2003) 0.84

23S rRNA 2058A-->G alteration mediates ketolide resistance in combination with deletion in L22. Antimicrob Agents Chemother (2006) 0.84

The structure of ribosome-lankacidin complex reveals ribosomal sites for synergistic antibiotics. Proc Natl Acad Sci U S A (2010) 0.84

Designer drugs for discerning bugs. Proc Natl Acad Sci U S A (2010) 0.82

Structure of the mammalian antimicrobial peptide Bac7(1-16) bound within the exit tunnel of a bacterial ribosome. Nucleic Acids Res (2016) 0.82

Probing the initiation complex formation on E coli ribosomes using short complementary DNA oligomers. Biochimie (1992) 0.78

Bactobolin A binds to a site on the 70S ribosome distinct from previously seen antibiotics. J Mol Biol (2015) 0.78