Published in Nihon Ishinkin Gakkai Zasshi on January 01, 2008
Unexpected genomic variability in clinical and environmental strains of the pathogenic yeast Candida parapsilosis. Genome Biol Evol (2013) 0.91
Genetically Engineered Virus Nanofibers as an Efficient Vaccine for Preventing Fungal Infection. Adv Healthc Mater (2016) 0.78
A novel small molecule methyltransferase is important for virulence in Candida albicans. ACS Chem Biol (2013) 0.77
Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature (2009) 5.90
Control of chemokine-guided cell migration by ligand sequestration. Cell (2008) 4.61
Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev (2003) 4.07
Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol (2005) 3.00
Candida albicans pathogenicity mechanisms. Virulence (2013) 2.60
In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol (2007) 2.35
Cerebral microbleeds and postthrombolysis intracerebral hemorrhage risk Updated meta-analysis. Neurology (2015) 2.28
Sublingual immunotherapy for allergic rhinitis. Cochrane Database Syst Rev (2010) 2.10
Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol (2003) 1.97
Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses (2005) 1.96
the hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog (2008) 1.94
Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infect Immun (2002) 1.82
Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol (2009) 1.77
Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J Biol Chem (2005) 1.77
New modules for PCR-based gene targeting in Candida albicans: rapid and efficient gene targeting using 100 bp of flanking homology region. Yeast (2003) 1.76
Candida albicans proteinases and host/pathogen interactions. Cell Microbiol (2004) 1.73
Anti-fungal therapy at the HAART of viral therapy. Trends Microbiol (2002) 1.72
In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Mol Microbiol (2007) 1.68
Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. J Clin Invest (2007) 1.67
From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One (2011) 1.54
Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology (2008) 1.52
Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol (2012) 1.50
Complement plays a central role in Candida albicans-induced cytokine production by human PBMCs. Eur J Immunol (2012) 1.50
The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect Immun (2003) 1.49
Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape. Curr Opin Microbiol (2010) 1.39
An Interspecies Regulatory Network Inferred from Simultaneous RNA-seq of Candida albicans Invading Innate Immune Cells. Front Microbiol (2012) 1.35
Candida albicans iron acquisition within the host. FEMS Yeast Res (2009) 1.35
Candida albicans dimorphism as a therapeutic target. Expert Rev Anti Infect Ther (2012) 1.34
Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biol (2011) 1.34
Candida albicans scavenges host zinc via Pra1 during endothelial invasion. PLoS Pathog (2012) 1.34
Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia. Nat Protoc (2006) 1.34
The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J Immunol (2011) 1.33
Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis. Microbiology (2004) 1.29
Infection of human oral epithelia with Candida species induces cytokine expression correlated to the degree of virulence. J Invest Dermatol (2002) 1.27
Polymorphonuclear leukocytes (PMNs) induce protective Th1-type cytokine epithelial responses in an in vitro model of oral candidosis. Microbiology (2004) 1.23
CandidaDB: a genome database for Candida albicans pathogenomics. Nucleic Acids Res (2005) 1.23
Expression analysis of the Candida albicans lipase gene family during experimental infections and in patient samples. FEMS Yeast Res (2004) 1.20
Identifying infection-associated genes of Candida albicans in the postgenomic era. FEMS Yeast Res (2009) 1.19
Two unlike cousins: Candida albicans and C. glabrata infection strategies. Cell Microbiol (2013) 1.19
A novel immune evasion strategy of candida albicans: proteolytic cleavage of a salivary antimicrobial peptide. PLoS One (2009) 1.18
Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect (2011) 1.17
Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress. PLoS One (2012) 1.15
Exposure of Candida albicans to antifungal agents affects expression of SAP2 and SAP9 secreted proteinase genes. J Antimicrob Chemother (2005) 1.13
Induction of ERK-kinase signalling triggers morphotype-specific killing of Candida albicans filaments by human neutrophils. Cell Microbiol (2007) 1.13
Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLoS One (2012) 1.12
Candida albicans-secreted aspartic proteinases modify the epithelial cytokine response in an in vitro model of vaginal candidiasis. Infect Immun (2005) 1.11
Reduced expression of the hyphal-independent Candida albicans proteinase genes SAP1 and SAP3 in the efg1 mutant is associated with attenuated virulence during infection of oral epithelium. J Med Microbiol (2003) 1.11
Persistence versus escape: Aspergillus terreus and Aspergillus fumigatus employ different strategies during interactions with macrophages. PLoS One (2012) 1.08
Secreted aspartic protease cleavage of Candida albicans Msb2 activates Cek1 MAPK signaling affecting biofilm formation and oropharyngeal candidiasis. PLoS One (2012) 1.06
Ciclopirox olamine treatment affects the expression pattern of Candida albicans genes encoding virulence factors, iron metabolism proteins, and drug resistance factors. Antimicrob Agents Chemother (2003) 1.06
The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol Immunol (2009) 1.06
Proteolytic cleavage of covalently linked cell wall proteins by Candida albicans Sap9 and Sap10. Eukaryot Cell (2010) 1.03
Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells. BMC Syst Biol (2010) 1.02
Thriving within the host: Candida spp. interactions with phagocytic cells. Med Microbiol Immunol (2013) 1.02
The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension. PLoS One (2011) 1.00
Human natural killer cells acting as phagocytes against Candida albicans and mounting an inflammatory response that modulates neutrophil antifungal activity. J Infect Dis (2013) 1.00
A core filamentation response network in Candida albicans is restricted to eight genes. PLoS One (2013) 0.99
Dynamics of CENP-N kinetochore binding during the cell cycle. J Cell Sci (2011) 0.99
CCR4 in human allergen-induced late responses in the skin and lung. Eur J Immunol (2002) 0.99
The Inflammatory response induced by aspartic proteases of Candida albicans is independent of proteolytic activity. Infect Immun (2010) 0.98
Secreted aspartic proteases of Candida albicans activate the NLRP3 inflammasome. Eur J Immunol (2013) 0.98
Embryonated eggs as an alternative infection model to investigate Aspergillus fumigatus virulence. Infect Immun (2010) 0.97
MfLIP1, a gene encoding an extracellular lipase of the lipid-dependent fungus Malassezia furfur. Microbiology (2006) 0.96
The glycosylphosphatidylinositol-anchored protease Sap9 modulates the interaction of Candida albicans with human neutrophils. Infect Immun (2009) 0.95
The novel Candida albicans transporter Dur31 Is a multi-stage pathogenicity factor. PLoS Pathog (2012) 0.95
Chemical genetics suggests a critical role for lysyl oxidase in zebrafish notochord morphogenesis. Mol Biosyst (2006) 0.95
Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris. BMC Microbiol (2008) 0.94
Host-pathogen interactions and virulence-associated genes during Candida albicans oral infections. Int J Med Microbiol (2011) 0.94
Fungal adaptation to the host environment. Curr Opin Microbiol (2009) 0.94
The role of secreted aspartyl proteinases in Candida albicans keratitis. Invest Ophthalmol Vis Sci (2007) 0.93
Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans. PLoS One (2012) 0.93
Hgc1 mediates dynamic Candida albicans-endothelium adhesion events during circulation. Eukaryot Cell (2009) 0.91
Factors supporting cysteine tolerance and sulfite production in Candida albicans. Eukaryot Cell (2013) 0.90
Candida albicans adhesion to and invasion and damage of vaginal epithelial cells: stage-specific inhibition by clotrimazole and bifonazole. Antimicrob Agents Chemother (2011) 0.90
The early transcriptional response of human granulocytes to infection with Candida albicans is not essential for killing but reflects cellular communications. Infect Immun (2006) 0.89
Functional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes, CaPLC2 and CaPLC3, of Candida albicans. Microbiology (2005) 0.89
Pathogenesis of Candida albicans infections in the alternative chorio-allantoic membrane chicken embryo model resembles systemic murine infections. PLoS One (2011) 0.88