Studies on polynucleotides, C. A novel joining reaction catalyzed by the T4-polynucleotide ligase.

PubWeight™: 3.11‹?› | Rank: Top 1%

🔗 View Article (PMC 283376)

Published in Proc Natl Acad Sci U S A on November 01, 1970

Authors

V Sgaramella, J H Van de Sande, H G Khorana

Articles citing this

Construction of plasmids carrying the cI gene of bacteriophage lambda. Proc Natl Acad Sci U S A (1976) 13.10

Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci U S A (1972) 8.82

Nucleotide sequence of the attenuator region of the histidine operon of Escherichia coli K-12. Proc Natl Acad Sci U S A (1978) 2.71

Enzymatic oligomerization of bacteriophage P22 DNA and of linear Simian virus 40 DNA. Proc Natl Acad Sci U S A (1972) 2.62

Macromolecular crowding allows blunt-end ligation by DNA ligases from rat liver or Escherichia coli. Proc Natl Acad Sci U S A (1983) 2.41

Minimal length of the lactose operator sequence for the specific recognition by the lactose repressor. Proc Natl Acad Sci U S A (1977) 1.95

In vitro transcription of normal, mutant, and truncated mouse alpha-globin genes. Proc Natl Acad Sci U S A (1980) 1.69

Different restriction enzyme-generated sticky DNA ends can be joined in vitro. Nucleic Acids Res (1984) 1.66

Mismatch and blunt to protruding-end joining by DNA ligases. Nucleic Acids Res (1987) 1.50

Influence of monovalent cations on the activity of T4 DNA ligase in the presence of polyethylene glycol. Nucleic Acids Res (1985) 1.24

AMP-dependent DNA relaxation catalyzed by DNA ligase occurs by a nicking-closing mechanism. Nucleic Acids Res (1988) 1.12

Primary structure and genetic organization of phage T4 DNA ligase. Nucleic Acids Res (1983) 1.10

Physical mapping of the Escherichia coli D-serine deaminase region: contiguity of the dsd structural and regulatory genes. J Bacteriol (1980) 1.06

Exponential megapriming PCR (EMP) cloning--seamless DNA insertion into any target plasmid without sequence constraints. PLoS One (2012) 1.00

Partial suppression of bacteriophage T4 ligase mutations by T4 endonuclease II deficiency: role of host ligase. J Virol (1971) 0.97

Molecular recombination and the repair of DNA double-strand breaks in CHO cells. Nucleic Acids Res (1979) 0.95

The expression in E. coli of synthetic repeating polymeric genes coding for poly(L-aspartyl-L-phenylalanine). Nucleic Acids Res (1980) 0.92

Synthesis, complete 1H assignments and conformations of the self-complementary hexadeoxyribonucleotide [d(CpGpApTpCpG)]2 and its fragments by high field NMR. Nucleic Acids Res (1984) 0.85

Restoration by T4 ligase of DNA sequences sensitive to "flush" cleaving restriction enzyme. Nucleic Acids Res (1977) 0.82

Recipient gene duplication during generalized transduction. Genetics (1974) 0.80

Determination of the sequences of 18 nucleotides from the 5'-end of the 1-strand and 15 nucleotides from the 5'-end of the r-strand of T7 DNA. Nucleic Acids Res (1975) 0.78

A novel DNA joining activity catalyzed by T4 DNA ligase. Nucleic Acids Res (1991) 0.78

From Structure-Function Analyses to Protein Engineering for Practical Applications of DNA Ligase. Archaea (2015) 0.76

Archaeal Nucleic Acid Ligases and Their Potential in Biotechnology. Archaea (2015) 0.76

Characterization of cloned cDNA sequences derived from Xenopus laevis poly A(+) oocyte RNA. Nucleic Acids Res (1980) 0.75

Articles by these authors

CV. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Chemical synthesis of an icosadeoxyribonucleotide corresponding to the nucleotide sequence 31 to 50. J Mol Biol (1972) 58.52

Reversal of bacteriophage T4 induced polynucleotide kinase action. Biochemistry (1973) 21.41

Physical characterization and simultaneous purification of bacteriophage T4 induced polynucleotide kinase, polynucleotide ligase, and deoxyribonucleic acid polymerase. Biochemistry (1973) 11.45

CXII. Total synthesis of the structural gene for an alanine transfer RNA from yeast. Enzymic joining of the chemically synthesized polydeoxynucleotides to form the DNA duplex representing nucleotide sequence 1 to 20. J Mol Biol (1972) 7.10

Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science (1996) 6.50

High-pressure liquid chromatography in polynucleotide synthesis. Biochemistry (1978) 5.98

Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc Natl Acad Sci U S A (1987) 5.11

Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212. Biochemistry (1988) 4.93

Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci U S A (1989) 4.44

A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci U S A (1994) 4.27

Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science (1990) 4.07

Studies on polynucleotides. LI. Syntheses of the 64 possible ribotrinucleotides derived from the four major ribomononucleotides. J Am Chem Soc (1966) 3.83

Amino acid sequence of bacteriorhodopsin. Proc Natl Acad Sci U S A (1979) 3.74

Studies on polynucleotides, XLIX. Stimulation of the binding of aminoacyl-sRNA's to ribosomes by ribotrinucleotides and a survey of codon assignments for 20 amino acids. Proc Natl Acad Sci U S A (1965) 3.71

Specific amino acid substitutions in bacterioopsin: Replacement of a restriction fragment in the structural gene by synthetic DNA fragments containing altered codons. Proc Natl Acad Sci U S A (1984) 3.67

The bacteriorhodopsin gene. Proc Natl Acad Sci U S A (1981) 3.40

Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry (1989) 3.25

Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. Proc Natl Acad Sci U S A (1988) 3.13

Total synthesis of a gene for bovine rhodopsin. Proc Natl Acad Sci U S A (1986) 3.08

Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin. Proc Natl Acad Sci U S A (1989) 3.06

Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc Natl Acad Sci U S A (1988) 3.01

Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa. Biochemistry (1994) 2.88

Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base. Proc Natl Acad Sci U S A (1990) 2.80

Bacterio-opsin mRNA in wild-type and bacterio-opsin-deficient Halobacterium halobium strains. Proc Natl Acad Sci U S A (1984) 2.77

A transposable element from Halobacterium halobium which inactivates the bacteriorhodopsin gene. Proc Natl Acad Sci U S A (1982) 2.76

High-frequency spontaneous mutation in the bacterio-opsin gene in Halobacterium halobium is mediated by transposable elements. Proc Natl Acad Sci U S A (1983) 2.70

Replacement of aspartic acid-96 by asparagine in bacteriorhodopsin slows both the decay of the M intermediate and the associated proton movement. Proc Natl Acad Sci U S A (1989) 2.64

Enzymatic oligomerization of bacteriophage P22 DNA and of linear Simian virus 40 DNA. Proc Natl Acad Sci U S A (1972) 2.62

Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Nature (1970) 2.51

Studies on polynucleotides, lxviii the primary structure of yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A (1967) 2.45

Total synthesis of a gene. Science (1979) 2.38

A single amino acid substitution in rhodopsin (lysine 248----leucine) prevents activation of transducin. J Biol Chem (1988) 2.37

CIV. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Chemical synthesis of an icosadeoxynucleotide corresponding to the nucleotide sequence 21 to 40. J Mol Biol (1972) 2.35

Structure and function in rhodopsin. Measurement of the rate of metarhodopsin II decay by fluorescence spectroscopy. J Biol Chem (1995) 2.34

Structure and function in rhodopsin: high level expression of a synthetic bovine opsin gene and its mutants in stable mammalian cell lines. Proc Natl Acad Sci U S A (1996) 2.24

Orientation of bacteriorhodopsin in Halobacterium halobium as studied by selective proteolysis. Proc Natl Acad Sci U S A (1977) 2.23

Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187. J Biol Chem (1990) 2.18

The nucleotide sequence in the promoter region of the fene for an Escherichia coli tyrosine transfer ribonucleic acid. J Biol Chem (1975) 2.17

Partial primary structure of bacteriorhodopsin: sequencing methods for membrane proteins. Proc Natl Acad Sci U S A (1979) 2.17

Structure and function in rhodopsin: the role of asparagine-linked glycosylation. Proc Natl Acad Sci U S A (1994) 2.17

Rhodopsin mutants that bind but fail to activate transducin. Science (1990) 2.16

GTPase of bovine rod outer segments: the amino acid sequence of the alpha subunit as derived from the cDNA sequence. Proc Natl Acad Sci U S A (1985) 2.09

Studies on polynucleotides. 118. A further study of ribonucleotide incorporation into deoxyribonucleic acid chains by deoxyribonucleic acid polymerase I of Escherichia coli. J Biol Chem (1972) 2.09

Glycerophospholipid synthesis: improved general method and new analogs containing photoactivable groups. Proc Natl Acad Sci U S A (1977) 2.07

Studies on polynucleotides. LXIX. Synthetic deoxyribopolynucleotides as templates for the DNA polymerase of Escherichia coli: DNA-like polymers containing repeating trinucleotide sequences. J Mol Biol (1967) 2.06

Replacement of aspartic residues 85, 96, 115, or 212 affects the quantum yield and kinetics of proton release and uptake by bacteriorhodopsin. Proc Natl Acad Sci U S A (1989) 2.04

Refolding of an integral membrane protein. Denaturation, renaturation, and reconstitution of intact bacteriorhodopsin and two proteolytic fragments. J Biol Chem (1981) 2.03

Studies on polynucleotides. LXVII. Initiation of protein synthesis in vitro as studied by using ribopolynucleotides with repeating nucleotide sequences as messengers. J Mol Biol (1967) 2.02

Nucleotide sequence in the promoter region of the Escherichia coli tyrosine tRNA gene. Proc Natl Acad Sci U S A (1974) 2.01

Role of the intradiscal domain in rhodopsin assembly and function. Proc Natl Acad Sci U S A (1990) 1.97

Protonation state of Asp (Glu)-85 regulates the purple-to-blue transition in bacteriorhodopsin mutants Arg-82----Ala and Asp-85----Glu: the blue form is inactive in proton translocation. Proc Natl Acad Sci U S A (1990) 1.94

Total synthesis of the structural gene for the precursor of a tyrosine suppressor transfer RNA from Escherichia coli. 1. General introduction. J Biol Chem (1976) 1.91

Studies on polynucleotides. 103. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. J Mol Biol (1972) 1.90

Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study. Biochemistry (1996) 1.88

Studies on polynucleotides. XCVI. Repair replications of short synthetic DNA's as catalyzed by DNA polymerases. J Mol Biol (1971) 1.87

Site of attachment of retinal in bacteriorhodopsin. Proc Natl Acad Sci U S A (1981) 1.87

Structure of the lipopolysaccharide from an Escherichia coli heptose-less mutant. I. Chemical degradations and identification of products. J Biol Chem (1979) 1.86

Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin. J Biol Chem (1992) 1.82

Mapping of the amino acids in membrane-embedded helices that interact with the retinal chromophore in bovine rhodopsin. J Biol Chem (1991) 1.80

End group labelling of RNA and double stranded DNA by phosphate exchange catalyzed by bacteriophage T4 induced polynucleotide kinase. Biochem Biophys Res Commun (1975) 1.80

Rapid long-range proton diffusion along the surface of the purple membrane and delayed proton transfer into the bulk. Proc Natl Acad Sci U S A (1995) 1.77

Structure-function studies on bacteriorhodopsin. X. Individual substitutions of arginine residues by glutamine affect chromophore formation, photocycle, and proton translocation. J Biol Chem (1989) 1.73

Studies on polynucleotides. LXXXVII. The joining of short deoxyribopolynucleotides by DNA-joining enzymes. Proc Natl Acad Sci U S A (1968) 1.72

Polynucleotide ligase-catalyzed joining of deoxyribo-oligonucleotides on ribopolynucleotide templates and of ribo-oligonucleotides on deoxyribopolynucleotide templates. Proc Natl Acad Sci U S A (1970) 1.70

Time-resolved detection of structural changes during the photocycle of spin-labeled bacteriorhodopsin. Science (1994) 1.70

Replacement of leucine-93 by alanine or threonine slows down the decay of the N and O intermediates in the photocycle of bacteriorhodopsin: implications for proton uptake and 13-cis-retinal----all-trans-retinal reisomerization. Proc Natl Acad Sci U S A (1991) 1.69

Site-directed isotope labelling and FTIR spectroscopy of bacteriorhodopsin. Nat Struct Biol (1994) 1.67

A further study of misreading of codons induced by streptomycin and neomycin using ribopolynucleotides containing two nucleotides in alternating sequence as templates. J Mol Biol (1966) 1.65

Vibrational spectroscopy of bacteriorhodopsin mutants: I. Tyrosine-185 protonates and deprotonates during the photocycle. Proteins (1988) 1.63

Chemical synthesis and cloning of a tyrosine tRNA gene. Methods Enzymol (1979) 1.63

Structure-function studies on bacteriorhodopsin. III. Total synthesis of a gene for bacterio-opsin and its expression in Escherichia coli. J Biol Chem (1987) 1.62

Structure and function in rhodopsin: replacement by alanine of cysteine residues 110 and 187, components of a conserved disulfide bond in rhodopsin, affects the light-activated metarhodopsin II state. Proc Natl Acad Sci U S A (1994) 1.62

Nucleotide sequence studies on yeast phenylalanine sRNA. Cold Spring Harb Symp Quant Biol (1966) 1.61

Structure and function in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa. Proc Natl Acad Sci U S A (1996) 1.61

Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent. Proc Natl Acad Sci U S A (2001) 1.61

Denaturation and renaturation of bacteriorhodopsin in detergents and lipid-detergent mixtures. J Biol Chem (1982) 1.60

Studies on polynucleotides. CXVII. Hybridization of polydeoxynucleotides with tyrosine transfer RNA sequences to the r-strand of phi80psu + 3 DNA. J Mol Biol (1972) 1.58

Bacteriorhodopsin mutants containing single tyrosine to phenylalanine substitutions are all active in proton translocation. Proc Natl Acad Sci U S A (1987) 1.58

Studies on polynucleotides, 88. Enzymatic joining of chemically synthesized segments corresponding to the gene for alanine-tRNA. Proc Natl Acad Sci U S A (1968) 1.57

Formation of the meta II photointermediate is accompanied by conformational changes in the cytoplasmic surface of rhodopsin. Biochemistry (1993) 1.55

Studies on polynucleotides. 48. The in vitro synthesis of a co-polypeptide containing two amino acids in alternating sequence dependent upon a DNA-like polymer containing two nucleotides in alternating sequence. J Mol Biol (1965) 1.54

Mechanism of light-dependent proton translocation by bacteriorhodopsin. J Bacteriol (1993) 1.52

Structure-function studies on bacteriorhodopsin. V. Effects of amino acid substitutions in the putative helix F. J Biol Chem (1987) 1.51

Italy's role in EMBL. Science (1994) 1.49

Bacteriorhodopsin: partial sequence of mRNA provides amino acid sequence in the precursor region. Proc Natl Acad Sci U S A (1981) 1.48

Studies on polynucleotides. CXXII. The dodecanucleotide sequence adjoining the C-C-A end of the tyrosine transfer ribonucleic acid gene. J Biol Chem (1973) 1.48

Structure and function in rhodopsin: kinetic studies of retinal binding to purified opsin mutants in defined phospholipid-detergent mixtures serve as probes of the retinal binding pocket. Proc Natl Acad Sci U S A (1999) 1.46

Different specific activities of the monomeric and oligomeric forms of plasmid DNA in transformation of B. subtilis and E. coli. Mol Gen Genet (1979) 1.45

NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution (19)F NMR. Proc Natl Acad Sci U S A (1999) 1.43

Delipidation of bacteriorhodopsin and reconstitution with exogenous phospholipid. Proc Natl Acad Sci U S A (1980) 1.43

Orientation of retinal in bacteriorhodopsin as studied by cross-linking using a photosensitive analog of retinal. J Biol Chem (1982) 1.43