Published in Proc Natl Acad Sci U S A on October 01, 1977
1-O-Alkyl-sn-glyceryl-3-phosphorylcholines: a novel class of neutrophil stimulants. Am J Pathol (1981) 1.56
Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves Plant Cell (1999) 1.53
Deuterium nuclear magnetic resonance investigation of the effects of proteins and polypeptides on hydrocarbon chain order in model membrane systems. Proc Natl Acad Sci U S A (1978) 1.53
Positional Specificity and Fatty Acid Selectivity of Purified sn-Glycerol 3-Phosphate Acyltransferases from Chloroplasts. Plant Physiol (1981) 1.50
Phospholipase d activation correlates with microtubule reorganization in living plant cells. Plant Cell (2003) 1.49
Chain-length dependence of lipid bilayer properties near the liquid crystal to gel phase transition. Biophys J (1992) 1.42
Hydrophobic molecules in lecithin-water systems. I. Formation of reversed hexagonal phases at high and low water contents. Biophys J (1987) 1.23
Phase equilibria in DOPC/DPPC-d62/cholesterol mixtures. Biophys J (2009) 1.21
Intermolecular crosslinking of fatty acyl chains in phospholipids: use of photoactivable carbene precursors. Proc Natl Acad Sci U S A (1979) 1.20
Anaphylactic actions of platelet-activating factor. Am J Pathol (1981) 1.12
Phase transitions in phosphatidylcholine multibilayers. Proc Natl Acad Sci U S A (1982) 1.11
High resolution 1H nuclear magnetic resonance of a transmembrane peptide. Biophys J (1995) 1.07
Evaluation of pathways for the cellular uptake of high density lipoprotein cholesterol esters in rabbits. J Clin Invest (1991) 1.06
Phospholipid synthesis: Oxazaphospholanes and dioxaphospholanes as intermediates. Proc Natl Acad Sci U S A (1978) 1.01
Sites of intermolecular crosslinking of fatty acyl chains in phospholipids carrying a photoactivable carbene precursor. Proc Natl Acad Sci U S A (1979) 1.01
Reconstitution and partial characterization of phospholipid flippase activity from detergent extracts of the Bacillus subtilis cell membrane. J Bacteriol (2000) 0.98
Distribution of distinct arachidonoyl-specific and non-specific isoenzymes of diacylglycerol kinase in baboon (Papio cynocephalus) tissues. Biochem J (1990) 0.94
Smoothed acyl chain orientational order parameter profiles in dimyristoylphosphatidylcholine-distearoylphosphatidylcholine mixtures: a 2H-NMR study. Biophys J (1995) 0.92
The effect of fructan on membrane lipid organization and dynamics in the dry state. Biophys J (2003) 0.89
Identification, purification, and characterization of a thermally stable lipase from rice bran. A new member of the (phospho) lipase family. Plant Physiol (2001) 0.88
A unique phospholipid organization in bovine erythrocyte membranes. Proc Natl Acad Sci U S A (2001) 0.87
Labelling of the intramembranous region of the major sialoglycoprotein of human erythrocytes with a photosensitive hydrophobic probe. Biochem J (1979) 0.86
Photochemical dimerization of parinaric acid in lipid bilayers. Proc Natl Acad Sci U S A (1980) 0.85
New patterns of diacylglycerol metabolism in intact cells. Biochem J (1993) 0.84
Use of photosensitive hydrophobic probes to label the membrane of the human erythrocyte. Biochem J (1979) 0.84
Incorporation of synthetic fatty acid analogs into phospholipids of Escherichia coli. J Bacteriol (1979) 0.84
Mapping the catalytic pocket of phospholipases A2 and C using a novel set of phosphatidylcholines. Biochem J (2000) 0.83
Interaction of platelet-activating factor with cultured guinea pig tracheal epithelial cells. Biochem J (1991) 0.80
Cold adaptation of eicosapentaenoic acid-less mutant of Shewanella livingstonensis Ac10 involving uptake and remodeling of synthetic phospholipids containing various polyunsaturated fatty acids. Extremophiles (2008) 0.79
Phospholipase activity on N-acyl phosphatidylethanolamines is critically dependent on the N-acyl chain length. Biochem J (2003) 0.78
Phospholipid biosynthesis in human platelets. The acylation of lyso-platelet-activating factor. Biochem J (1985) 0.78
Effects of hydrostatic pressure on bilayer phase behavior and dynamics of dilauroylphosphatidylcholine. Biophys J (1996) 0.78
Protein-associated lipid of Bacillus stearothermophilus. J Bacteriol (1979) 0.77
Synthesis and Biological Evaluation of Novel Phosphatidylcholine Analogues Containing Monoterpene Acids as Potent Antiproliferative Agents. PLoS One (2016) 0.77
The total synthesis of 2-O-arachidonoyl-1-O-stearoyl-sn-glycero-3-phosphocholine-1,3,1'-(13)C3 and -2,1'-(13)C2 by a novel chemoenzymatic method. Chem Phys Lipids (2010) 0.75
The isolation of human-erythrocyte band-3 polypeptide labelled with a photosensitive hydrophobic probe. Biochem J (1980) 0.75
Two-ligand priming mechanism for potentiated phosphoinositide synthesis is an evolutionarily conserved feature of Sec14-like phosphatidylinositol and phosphatidylcholine exchange proteins. Mol Biol Cell (2016) 0.75
Structure and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine bilayer membranes. Biophys J (1994) 0.75
Nuclear magnetic resonance and calorimetric study of the structure, dynamics, and phase behavior of uranyl ion/dipalmitoylphosphatidylcholine complexes. Biophys J (1988) 0.75
Dynamics and Energetics of the Mammalian Phosphatidylinositol Transfer Protein Phospholipid Exchange Cycle. J Biol Chem (2017) 0.75
Separation of the phosphoric esters on the filter paper chromatogram. Nature (1949) 42.78
The chromatographic identification of some biologically important phosphate esters. J Biol Chem (1951) 26.34
The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem (1960) 21.21
Synthesis of lecithins by acylation of O-(sn-glycero-3-phosphoryl) choline with fatty acid anhydrides. Biochim Biophys Acta (1969) 3.53
Biosynthesis of phosphatidyl glycerophosphate in Escherichia coli. J Lipid Res (1967) 2.50
Synthesis of fatty acid anhydrides by reaction with dicyclohexylcarbodiimide. J Lipid Res (1966) 1.92
ON THE SITE OF ESTERIFICATION OF AMINO ACIDS TO SOLUBLE RNA. Biochemistry (1964) 1.48
A new approach to the study of phospholipid-protein interactions in biological membranes. Synthesis of fatty acids and phospholipids containing photosensitive groups. Biochemistry (1975) 1.43
Incorporation of fatty acids containing photosensitive groups into phospholipids of Escherichia coli. Proc Natl Acad Sci U S A (1976) 1.19
A novel synthesis of spin label derivatives of phosphatidylcholine. Anal Biochem (1975) 1.14
Spray detection of phospholipids on thin-layer chromatograms. J Lipid Res (1971) 1.06
2-diazo-3,3,3-trifluoropropionyl chloride: reagent for photoaffinity labeling. Proc Natl Acad Sci U S A (1976) 1.02
An improved method for the preparation of unsaturated phosphatidylcholines: acylation of sn-glycero-3-phosphorylcholine in the presence of sodium methylsulfinylmethide. J Lipid Res (1977) 0.96
Synthesis of saturated and unsaturated L-alpha-lecithins; acylation of the cadmium chloride compound of L-alpha-glycerylphosphorylcholine. Can J Biochem Physiol (1959) 0.95
The synthesis of diacyl-dl-(and-L-) alpha-glycerol phosphate. Chem Phys Lipids (1969) 0.86
A simplified procedure for synthesis of di-[14C]acyl-labeled lecithins. J Lipid Res (1975) 0.84
Acyl-chloro-deoxyglycerophosphorylcholines: structure of the so-called cyclic lysolecithins. Biochim Biophys Acta (1971) 0.84
Stearoyl paratoluenesulfonate. A powerful acylating agent for lipid synthesis. Chem Phys Lipids (1976) 0.84
Simplified pathways for the preparation of some well-defined phosphoglycerides. Chem Phys Lipids (1973) 0.83
CV. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Chemical synthesis of an icosadeoxyribonucleotide corresponding to the nucleotide sequence 31 to 50. J Mol Biol (1972) 58.52
Reversal of bacteriophage T4 induced polynucleotide kinase action. Biochemistry (1973) 21.41
Physical characterization and simultaneous purification of bacteriophage T4 induced polynucleotide kinase, polynucleotide ligase, and deoxyribonucleic acid polymerase. Biochemistry (1973) 11.45
Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science (1996) 6.50
High-pressure liquid chromatography in polynucleotide synthesis. Biochemistry (1978) 5.98
Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc Natl Acad Sci U S A (1987) 5.11
Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212. Biochemistry (1988) 4.93
Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci U S A (1989) 4.44
A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci U S A (1994) 4.27
Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science (1990) 4.07
Studies on polynucleotides. LI. Syntheses of the 64 possible ribotrinucleotides derived from the four major ribomononucleotides. J Am Chem Soc (1966) 3.83
Amino acid sequence of bacteriorhodopsin. Proc Natl Acad Sci U S A (1979) 3.74
Studies on polynucleotides, XLIX. Stimulation of the binding of aminoacyl-sRNA's to ribosomes by ribotrinucleotides and a survey of codon assignments for 20 amino acids. Proc Natl Acad Sci U S A (1965) 3.71
Specific amino acid substitutions in bacterioopsin: Replacement of a restriction fragment in the structural gene by synthetic DNA fragments containing altered codons. Proc Natl Acad Sci U S A (1984) 3.67
The bacteriorhodopsin gene. Proc Natl Acad Sci U S A (1981) 3.40
Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry (1989) 3.25
Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. Proc Natl Acad Sci U S A (1988) 3.13
Studies on polynucleotides, C. A novel joining reaction catalyzed by the T4-polynucleotide ligase. Proc Natl Acad Sci U S A (1970) 3.11
Total synthesis of a gene for bovine rhodopsin. Proc Natl Acad Sci U S A (1986) 3.08
Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin. Proc Natl Acad Sci U S A (1989) 3.06
Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc Natl Acad Sci U S A (1988) 3.01
Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa. Biochemistry (1994) 2.88
Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base. Proc Natl Acad Sci U S A (1990) 2.80
Bacterio-opsin mRNA in wild-type and bacterio-opsin-deficient Halobacterium halobium strains. Proc Natl Acad Sci U S A (1984) 2.77
A transposable element from Halobacterium halobium which inactivates the bacteriorhodopsin gene. Proc Natl Acad Sci U S A (1982) 2.76
High-frequency spontaneous mutation in the bacterio-opsin gene in Halobacterium halobium is mediated by transposable elements. Proc Natl Acad Sci U S A (1983) 2.70
Replacement of aspartic acid-96 by asparagine in bacteriorhodopsin slows both the decay of the M intermediate and the associated proton movement. Proc Natl Acad Sci U S A (1989) 2.64
Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Nature (1970) 2.51
Studies on polynucleotides, lxviii the primary structure of yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A (1967) 2.45
Total synthesis of a gene. Science (1979) 2.38
A single amino acid substitution in rhodopsin (lysine 248----leucine) prevents activation of transducin. J Biol Chem (1988) 2.37
CIV. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Chemical synthesis of an icosadeoxynucleotide corresponding to the nucleotide sequence 21 to 40. J Mol Biol (1972) 2.35
Structure and function in rhodopsin. Measurement of the rate of metarhodopsin II decay by fluorescence spectroscopy. J Biol Chem (1995) 2.34
Structure and function in rhodopsin: high level expression of a synthetic bovine opsin gene and its mutants in stable mammalian cell lines. Proc Natl Acad Sci U S A (1996) 2.24
Orientation of bacteriorhodopsin in Halobacterium halobium as studied by selective proteolysis. Proc Natl Acad Sci U S A (1977) 2.23
Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187. J Biol Chem (1990) 2.18
The nucleotide sequence in the promoter region of the fene for an Escherichia coli tyrosine transfer ribonucleic acid. J Biol Chem (1975) 2.17
Partial primary structure of bacteriorhodopsin: sequencing methods for membrane proteins. Proc Natl Acad Sci U S A (1979) 2.17
Structure and function in rhodopsin: the role of asparagine-linked glycosylation. Proc Natl Acad Sci U S A (1994) 2.17
Rhodopsin mutants that bind but fail to activate transducin. Science (1990) 2.16
GTPase of bovine rod outer segments: the amino acid sequence of the alpha subunit as derived from the cDNA sequence. Proc Natl Acad Sci U S A (1985) 2.09
Studies on polynucleotides. 118. A further study of ribonucleotide incorporation into deoxyribonucleic acid chains by deoxyribonucleic acid polymerase I of Escherichia coli. J Biol Chem (1972) 2.09
Studies on polynucleotides. LXIX. Synthetic deoxyribopolynucleotides as templates for the DNA polymerase of Escherichia coli: DNA-like polymers containing repeating trinucleotide sequences. J Mol Biol (1967) 2.06
Replacement of aspartic residues 85, 96, 115, or 212 affects the quantum yield and kinetics of proton release and uptake by bacteriorhodopsin. Proc Natl Acad Sci U S A (1989) 2.04
Refolding of an integral membrane protein. Denaturation, renaturation, and reconstitution of intact bacteriorhodopsin and two proteolytic fragments. J Biol Chem (1981) 2.03
Studies on polynucleotides. LXVII. Initiation of protein synthesis in vitro as studied by using ribopolynucleotides with repeating nucleotide sequences as messengers. J Mol Biol (1967) 2.02
Nucleotide sequence in the promoter region of the Escherichia coli tyrosine tRNA gene. Proc Natl Acad Sci U S A (1974) 2.01
Role of the intradiscal domain in rhodopsin assembly and function. Proc Natl Acad Sci U S A (1990) 1.97
Protonation state of Asp (Glu)-85 regulates the purple-to-blue transition in bacteriorhodopsin mutants Arg-82----Ala and Asp-85----Glu: the blue form is inactive in proton translocation. Proc Natl Acad Sci U S A (1990) 1.94
Total synthesis of the structural gene for the precursor of a tyrosine suppressor transfer RNA from Escherichia coli. 1. General introduction. J Biol Chem (1976) 1.91
Studies on polynucleotides. 103. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. J Mol Biol (1972) 1.90
Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study. Biochemistry (1996) 1.88
Studies on polynucleotides. XCVI. Repair replications of short synthetic DNA's as catalyzed by DNA polymerases. J Mol Biol (1971) 1.87
Site of attachment of retinal in bacteriorhodopsin. Proc Natl Acad Sci U S A (1981) 1.87
Structure of the lipopolysaccharide from an Escherichia coli heptose-less mutant. I. Chemical degradations and identification of products. J Biol Chem (1979) 1.86
Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin. J Biol Chem (1992) 1.82
Mapping of the amino acids in membrane-embedded helices that interact with the retinal chromophore in bovine rhodopsin. J Biol Chem (1991) 1.80
Rapid long-range proton diffusion along the surface of the purple membrane and delayed proton transfer into the bulk. Proc Natl Acad Sci U S A (1995) 1.77
Structure-function studies on bacteriorhodopsin. X. Individual substitutions of arginine residues by glutamine affect chromophore formation, photocycle, and proton translocation. J Biol Chem (1989) 1.73
Studies on polynucleotides. LXXXVII. The joining of short deoxyribopolynucleotides by DNA-joining enzymes. Proc Natl Acad Sci U S A (1968) 1.72
Polynucleotide ligase-catalyzed joining of deoxyribo-oligonucleotides on ribopolynucleotide templates and of ribo-oligonucleotides on deoxyribopolynucleotide templates. Proc Natl Acad Sci U S A (1970) 1.70
Time-resolved detection of structural changes during the photocycle of spin-labeled bacteriorhodopsin. Science (1994) 1.70
Replacement of leucine-93 by alanine or threonine slows down the decay of the N and O intermediates in the photocycle of bacteriorhodopsin: implications for proton uptake and 13-cis-retinal----all-trans-retinal reisomerization. Proc Natl Acad Sci U S A (1991) 1.69
Site-directed isotope labelling and FTIR spectroscopy of bacteriorhodopsin. Nat Struct Biol (1994) 1.67
A further study of misreading of codons induced by streptomycin and neomycin using ribopolynucleotides containing two nucleotides in alternating sequence as templates. J Mol Biol (1966) 1.65
Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b. Protein Sci (1997) 1.64
Vibrational spectroscopy of bacteriorhodopsin mutants: I. Tyrosine-185 protonates and deprotonates during the photocycle. Proteins (1988) 1.63
Chemical synthesis and cloning of a tyrosine tRNA gene. Methods Enzymol (1979) 1.63
Structure-function studies on bacteriorhodopsin. III. Total synthesis of a gene for bacterio-opsin and its expression in Escherichia coli. J Biol Chem (1987) 1.62
Structure and function in rhodopsin: replacement by alanine of cysteine residues 110 and 187, components of a conserved disulfide bond in rhodopsin, affects the light-activated metarhodopsin II state. Proc Natl Acad Sci U S A (1994) 1.62
Nucleotide sequence studies on yeast phenylalanine sRNA. Cold Spring Harb Symp Quant Biol (1966) 1.61
Structure and function in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa. Proc Natl Acad Sci U S A (1996) 1.61
Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent. Proc Natl Acad Sci U S A (2001) 1.61
Denaturation and renaturation of bacteriorhodopsin in detergents and lipid-detergent mixtures. J Biol Chem (1982) 1.60
Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields. Phys Fluids (1994) (2011) 1.60
Studies on polynucleotides. CXVII. Hybridization of polydeoxynucleotides with tyrosine transfer RNA sequences to the r-strand of phi80psu + 3 DNA. J Mol Biol (1972) 1.58
Bacteriorhodopsin mutants containing single tyrosine to phenylalanine substitutions are all active in proton translocation. Proc Natl Acad Sci U S A (1987) 1.58
Studies on polynucleotides, 88. Enzymatic joining of chemically synthesized segments corresponding to the gene for alanine-tRNA. Proc Natl Acad Sci U S A (1968) 1.57
Generalized Langevin dynamics of a nanoparticle using a finite element approach: thermostating with correlated noise. J Chem Phys (2011) 1.55
Formation of the meta II photointermediate is accompanied by conformational changes in the cytoplasmic surface of rhodopsin. Biochemistry (1993) 1.55
Mechanism of light-dependent proton translocation by bacteriorhodopsin. J Bacteriol (1993) 1.52
Structure-function studies on bacteriorhodopsin. V. Effects of amino acid substitutions in the putative helix F. J Biol Chem (1987) 1.51
Bacteriorhodopsin: partial sequence of mRNA provides amino acid sequence in the precursor region. Proc Natl Acad Sci U S A (1981) 1.48
Studies on polynucleotides. CXXII. The dodecanucleotide sequence adjoining the C-C-A end of the tyrosine transfer ribonucleic acid gene. J Biol Chem (1973) 1.48
Structure and function in rhodopsin: kinetic studies of retinal binding to purified opsin mutants in defined phospholipid-detergent mixtures serve as probes of the retinal binding pocket. Proc Natl Acad Sci U S A (1999) 1.46
NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution (19)F NMR. Proc Natl Acad Sci U S A (1999) 1.43
Orientation of retinal in bacteriorhodopsin as studied by cross-linking using a photosensitive analog of retinal. J Biol Chem (1982) 1.43
Delipidation of bacteriorhodopsin and reconstitution with exogenous phospholipid. Proc Natl Acad Sci U S A (1980) 1.43
The retinylidene Schiff base counterion in bacteriorhodopsin. J Biol Chem (1991) 1.42
Bacteriorhodopsin mutants containing single substitutions of serine or threonine residues are all active in proton translocation. J Biol Chem (1991) 1.41
Studies on polynucleotides. CII. The use of aromatic isocyanates for selective blocking of the terminal 3'-hydroxyl group in protected deoxyribooligonucleotides. J Am Chem Soc (1972) 1.41
Palmitoylation of bovine opsin and its cysteine mutants in COS cells. Proc Natl Acad Sci U S A (1993) 1.41
Structure-function studies on bacteriorhodopsin. IX. Substitutions of tryptophan residues affect protein-retinal interactions in bacteriorhodopsin. J Biol Chem (1989) 1.40
Studies on polynucleotides. LXXIV. Direct translation in vitro of single-stranded DNA-like polymers with repeating nucleotide sequences in the presence of neomycin B. J Mol Biol (1967) 1.38
Noncardioplegic myocardial protection for CABG deserves a second look. Ann Thorac Surg (1997) 1.38