Use of the lipophilic tert-butyldiphenylsilyl protecting group in synthesis and rapid separation of polynucleotides.

PubWeight™: 1.06‹?› | Rank: Top 15%

🔗 View Article (PMID 656388)

Published in Biochemistry on April 04, 1978

Authors

R A Jones, H J Fritz, H G Khorana

Articles by these authors

CV. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Chemical synthesis of an icosadeoxyribonucleotide corresponding to the nucleotide sequence 31 to 50. J Mol Biol (1972) 58.52

Reversal of bacteriophage T4 induced polynucleotide kinase action. Biochemistry (1973) 21.41

Physical characterization and simultaneous purification of bacteriophage T4 induced polynucleotide kinase, polynucleotide ligase, and deoxyribonucleic acid polymerase. Biochemistry (1973) 11.45

The gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Res (1984) 8.30

Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of E. coli. Cell (1984) 7.26

CXII. Total synthesis of the structural gene for an alanine transfer RNA from yeast. Enzymic joining of the chemically synthesized polydeoxynucleotides to form the DNA duplex representing nucleotide sequence 1 to 20. J Mol Biol (1972) 7.10

Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science (1996) 6.50

High-pressure liquid chromatography in polynucleotide synthesis. Biochemistry (1978) 5.98

Directed mutagenesis of DNA cloned in filamentous phage: influence of hemimethylated GATC sites on marker recovery from restriction fragments. Nucleic Acids Res (1982) 5.72

Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc Natl Acad Sci U S A (1987) 5.11

Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212. Biochemistry (1988) 4.93

Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci U S A (1989) 4.44

A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci U S A (1994) 4.27

Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science (1990) 4.07

Efficient oligonucleotide-directed construction of mutations in expression vectors by the gapped duplex DNA method using alternating selectable markers. Nucleic Acids Res (1989) 3.99

Studies on polynucleotides. LI. Syntheses of the 64 possible ribotrinucleotides derived from the four major ribomononucleotides. J Am Chem Soc (1966) 3.83

Amino acid sequence of bacteriorhodopsin. Proc Natl Acad Sci U S A (1979) 3.74

Studies on polynucleotides, XLIX. Stimulation of the binding of aminoacyl-sRNA's to ribosomes by ribotrinucleotides and a survey of codon assignments for 20 amino acids. Proc Natl Acad Sci U S A (1965) 3.71

Specific amino acid substitutions in bacterioopsin: Replacement of a restriction fragment in the structural gene by synthetic DNA fragments containing altered codons. Proc Natl Acad Sci U S A (1984) 3.67

Infants of very low birthweight. A 15-year analysis. Lancet (1979) 3.53

The bacteriorhodopsin gene. Proc Natl Acad Sci U S A (1981) 3.40

Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry (1989) 3.25

Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. Proc Natl Acad Sci U S A (1988) 3.13

Studies on polynucleotides, C. A novel joining reaction catalyzed by the T4-polynucleotide ligase. Proc Natl Acad Sci U S A (1970) 3.11

Total synthesis of a gene for bovine rhodopsin. Proc Natl Acad Sci U S A (1986) 3.08

Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin. Proc Natl Acad Sci U S A (1989) 3.06

Common mistakes in infant feeding: survey from London borough. Br Med J (1978) 3.03

Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc Natl Acad Sci U S A (1988) 3.01

Genetic regulation of storaage protein content in maize endosperm. Biochem Genet (1976) 2.97

DNA mismatch-repair in Escherichia coli counteracting the hydrolytic deamination of 5-methyl-cytosine residues. EMBO J (1987) 2.91

Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa. Biochemistry (1994) 2.88

The sequence of IS4. Mol Gen Genet (1981) 2.80

Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base. Proc Natl Acad Sci U S A (1990) 2.80

Bacterio-opsin mRNA in wild-type and bacterio-opsin-deficient Halobacterium halobium strains. Proc Natl Acad Sci U S A (1984) 2.77

A transposable element from Halobacterium halobium which inactivates the bacteriorhodopsin gene. Proc Natl Acad Sci U S A (1982) 2.76

Mechanism of synergy of levamisole and fluorouracil: induction of human leukocyte antigen class I in a colorectal cancer cell line. J Natl Cancer Inst (1995) 2.74

Mismatches in DNA double strands: thermodynamic parameters and their correlation to repair efficiencies. Nucleic Acids Res (1986) 2.73

High-frequency spontaneous mutation in the bacterio-opsin gene in Halobacterium halobium is mediated by transposable elements. Proc Natl Acad Sci U S A (1983) 2.70

Replacement of aspartic acid-96 by asparagine in bacteriorhodopsin slows both the decay of the M intermediate and the associated proton movement. Proc Natl Acad Sci U S A (1989) 2.64

Small for dates babies: are they really a problem? Arch Dis Child (1986) 2.60

Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Nature (1970) 2.51

Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature (1996) 2.51

Studies on polynucleotides, lxviii the primary structure of yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A (1967) 2.45

Total synthesis of a gene. Science (1979) 2.38

Influence of loop residues on the relative stabilities of DNA hairpin structures. Proc Natl Acad Sci U S A (1988) 2.37

A single amino acid substitution in rhodopsin (lysine 248----leucine) prevents activation of transducin. J Biol Chem (1988) 2.37

The vsr gene product of E. coli K-12 is a strand- and sequence-specific DNA mismatch endonuclease. Nature (1991) 2.36

CIV. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Chemical synthesis of an icosadeoxynucleotide corresponding to the nucleotide sequence 21 to 40. J Mol Biol (1972) 2.35

Structure and function in rhodopsin. Measurement of the rate of metarhodopsin II decay by fluorescence spectroscopy. J Biol Chem (1995) 2.34

Structure and function in rhodopsin: high level expression of a synthetic bovine opsin gene and its mutants in stable mammalian cell lines. Proc Natl Acad Sci U S A (1996) 2.24

Orientation of bacteriorhodopsin in Halobacterium halobium as studied by selective proteolysis. Proc Natl Acad Sci U S A (1977) 2.23

Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187. J Biol Chem (1990) 2.18

The nucleotide sequence in the promoter region of the fene for an Escherichia coli tyrosine transfer ribonucleic acid. J Biol Chem (1975) 2.17

Partial primary structure of bacteriorhodopsin: sequencing methods for membrane proteins. Proc Natl Acad Sci U S A (1979) 2.17

Structure and function in rhodopsin: the role of asparagine-linked glycosylation. Proc Natl Acad Sci U S A (1994) 2.17

Influence of dangling thymidine residues on the stability and structure of two DNA duplexes. Biochemistry (1988) 2.16

Rhodopsin mutants that bind but fail to activate transducin. Science (1990) 2.16

Isolation and in vitro translation of zein messenger ribonucleic acid. Biochemistry (1976) 2.16

Breast feeding in an inner London borough--a study of cultural factors. Soc Sci Med (1977) 2.14

GTPase of bovine rod outer segments: the amino acid sequence of the alpha subunit as derived from the cDNA sequence. Proc Natl Acad Sci U S A (1985) 2.09

Studies on polynucleotides. 118. A further study of ribonucleotide incorporation into deoxyribonucleic acid chains by deoxyribonucleic acid polymerase I of Escherichia coli. J Biol Chem (1972) 2.09

Close vicinity of IS1 integration sites in the leader sequence of the gal operon of E. coli. Mol Gen Genet (1979) 2.07

Glycerophospholipid synthesis: improved general method and new analogs containing photoactivable groups. Proc Natl Acad Sci U S A (1977) 2.07

Studies on polynucleotides. LXIX. Synthetic deoxyribopolynucleotides as templates for the DNA polymerase of Escherichia coli: DNA-like polymers containing repeating trinucleotide sequences. J Mol Biol (1967) 2.06

Replacement of aspartic residues 85, 96, 115, or 212 affects the quantum yield and kinetics of proton release and uptake by bacteriorhodopsin. Proc Natl Acad Sci U S A (1989) 2.04

Refolding of an integral membrane protein. Denaturation, renaturation, and reconstitution of intact bacteriorhodopsin and two proteolytic fragments. J Biol Chem (1981) 2.03

Thermodynamics and structure of a DNA tetraplex: a spectroscopic and calorimetric study of the tetramolecular complexes of d(TG3T) and d(TG3T2G3T). Proc Natl Acad Sci U S A (1992) 2.03

Studies on polynucleotides. LXVII. Initiation of protein synthesis in vitro as studied by using ribopolynucleotides with repeating nucleotide sequences as messengers. J Mol Biol (1967) 2.02

Nucleotide sequence in the promoter region of the Escherichia coli tyrosine tRNA gene. Proc Natl Acad Sci U S A (1974) 2.01

Role of the intradiscal domain in rhodopsin assembly and function. Proc Natl Acad Sci U S A (1990) 1.97

Protonation state of Asp (Glu)-85 regulates the purple-to-blue transition in bacteriorhodopsin mutants Arg-82----Ala and Asp-85----Glu: the blue form is inactive in proton translocation. Proc Natl Acad Sci U S A (1990) 1.94

Total synthesis of the structural gene for the precursor of a tyrosine suppressor transfer RNA from Escherichia coli. 1. General introduction. J Biol Chem (1976) 1.91

Studies on polynucleotides. 103. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. J Mol Biol (1972) 1.90

Oligonucleotide-directed construction of mutations via gapped duplex DNA. Methods Enzymol (1987) 1.90

Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study. Biochemistry (1996) 1.88

Studies on polynucleotides. XCVI. Repair replications of short synthetic DNA's as catalyzed by DNA polymerases. J Mol Biol (1971) 1.87

Site of attachment of retinal in bacteriorhodopsin. Proc Natl Acad Sci U S A (1981) 1.87

Repeated and continuous exposures of laboratory animals to trichlorofluoromethane. Toxicol Appl Pharmacol (1970) 1.87

Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator. J Mol Biol (1996) 1.86

Structure of the lipopolysaccharide from an Escherichia coli heptose-less mutant. I. Chemical degradations and identification of products. J Biol Chem (1979) 1.86

Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin. J Biol Chem (1992) 1.82

Mapping of the amino acids in membrane-embedded helices that interact with the retinal chromophore in bovine rhodopsin. J Biol Chem (1991) 1.80

Rapid long-range proton diffusion along the surface of the purple membrane and delayed proton transfer into the bulk. Proc Natl Acad Sci U S A (1995) 1.77

Tetraplex formation of a guanine-containing nonameric DNA fragment. Science (1990) 1.75

Methylation of thymine residues during oligonucleotide synthesis. Nucleic Acids Res (1985) 1.74

Structure-function studies on bacteriorhodopsin. X. Individual substitutions of arginine residues by glutamine affect chromophore formation, photocycle, and proton translocation. J Biol Chem (1989) 1.73

Characterization of two mutations in the Escherichia coli galE gene inactivating the second galactose operator and comparative studies of repressor binding. EMBO J (1983) 1.72

Studies on polynucleotides. LXXXVII. The joining of short deoxyribopolynucleotides by DNA-joining enzymes. Proc Natl Acad Sci U S A (1968) 1.72

Polynucleotide ligase-catalyzed joining of deoxyribo-oligonucleotides on ribopolynucleotide templates and of ribo-oligonucleotides on deoxyribopolynucleotide templates. Proc Natl Acad Sci U S A (1970) 1.70

Time-resolved detection of structural changes during the photocycle of spin-labeled bacteriorhodopsin. Science (1994) 1.70

Replacement of leucine-93 by alanine or threonine slows down the decay of the N and O intermediates in the photocycle of bacteriorhodopsin: implications for proton uptake and 13-cis-retinal----all-trans-retinal reisomerization. Proc Natl Acad Sci U S A (1991) 1.69

Calorimetric and spectroscopic investigation of the helix-to-coil transition of the self-complementary deoxyribonucleotide ATGCAT. Biophys Chem (1981) 1.67

Site-directed isotope labelling and FTIR spectroscopy of bacteriorhodopsin. Nat Struct Biol (1994) 1.67

A further study of misreading of codons induced by streptomycin and neomycin using ribopolynucleotides containing two nucleotides in alternating sequence as templates. J Mol Biol (1966) 1.65

Vibrational spectroscopy of bacteriorhodopsin mutants: I. Tyrosine-185 protonates and deprotonates during the photocycle. Proteins (1988) 1.63

Chemical synthesis and cloning of a tyrosine tRNA gene. Methods Enzymol (1979) 1.63

Structure-function studies on bacteriorhodopsin. III. Total synthesis of a gene for bacterio-opsin and its expression in Escherichia coli. J Biol Chem (1987) 1.62

Structure and function in rhodopsin: replacement by alanine of cysteine residues 110 and 187, components of a conserved disulfide bond in rhodopsin, affects the light-activated metarhodopsin II state. Proc Natl Acad Sci U S A (1994) 1.62